CARBON STORAGE AND SEQUESTRATION POTENTIAL OF SMALLHOLDER TREE FARMS ON LEYTE ISLAND, THE PHILIPPINES

Renezita F. Sales, Rodel D. Lasco and Ma. Regina N. Banaticla

The role of terrestrial ecosystem in mitigating the effects of climate change entails the assessment of carbon stocks in various pools. This study predicts the carbon storage and sequestration potential of common tree farm species in Leyte Island, the Philippines. Data gathered from field measurements has been used to fit the Chapman-Richards growth function to predict the volume and biomass increment of *Gmelina arborea* and *Swietenia macrophylla* tree farms until they reached their respective rotation ages. Biomass and carbon density values are found to vary with age, type of species, site conditions and silvicultural treatments applied in the stand. Although differences in year when the trees were planted had no relation with its soil carbon storage, this pool had greater storage capacity than the above-ground biomass and roots. The average maximum growth was attained after 10 years for *G. arborea* and 13 years for *S. macrophylla*. Volume growth started to slow down when the tree species reached almost half its rotation age. The same trend was observed for the biomass and carbon density of each farm. The maximum mean annual increment of both species was attained before the expected maximum growth year. Growth increment decreased as the species reached their rotation age. The total C storage capacity of a 15-year-old *G. arborea* tree farm was estimated at 64 MgC/ha while that of a 25–year-old *S. macrophylla* was estimated at 159 MgC/ha. The average carbon sequestration rate of both species was 5 MgC/ha/yr which is lower than the average rate of most tree plantation species in the Philippines. With almost 2 M ha of grasslands in the country, establishing tree farms is a strategy to attain the national goal on sustainable development and at the same time reduce the greenhouse gases (GHGs) emissions.

INTRODUCTION

The IPCC Third Assessment Report (2001) presented new and stronger evidence that most of the warming observed in the last 50 years is due to human activities and warming is expected to continue this century and alter atmospheric composition. It was also predicted that by the year 2100, the average surface temperature will increase by between 1.4 to 5.8°C while sea level is expected to rise by 0.09 to 0.88 cm, resulting in flooding of low-lying areas. CO$_2$ is the most abundant greenhouse gas and is responsible for more than half of the radiative forcing associated with the greenhouse effect (Dixon *et al.* 1993, Moura-Costa 1996).

Forest ecosystems play an important role in climate change because they can be both sources and sinks of CO$_2$ (Trexler and Haugen 1994). At present, the world’s tropical forests are found to be a net source of C due to anthropologic activities including deforestation with an emission of 1.6 Gt (1 Gt = 1015 tons), in the year 1990 alone. In fact, Philippine forests, through massive deforestation, were found to have contributed about 3.7 Pg (1 Pg = 1015 tons) of C to the atmosphere from year 1500 to the modern era (Lasco and Pulhin 1998). Other causes could be mainly human-induced activities including fossil fuel burning and changes in land use and land cover (IPCC 1995).
The rehabilitation of degraded lands through the establishment of tree plantations and agroforestry may play an important role in sequestering CO$_2$. These strategies have become popular in many places due to a combination of economic return and the environmental benefits they provide (Aggangan 2000); however, there is little information on the carbon budgets of tropical tree plantations and tree farms. This information is needed for a more accurate picture of their role in mitigating climate change.

The study reported here aimed to predict the carbon stocks and sequestration of smallholder tree farms by using field data and fitting to Chapman-Richards growth functions throughout the species’ rotation age. In addition carbon stocks in the above-ground biomass, roots and soil were quantified. The capability of smallholder tree farms to store and sequester CO$_2$ especially when trees are planted in grassland areas is examined. The next section discusses the field measurements done in the sample tree farms. This is followed by volume, biomass and carbon storage and sequestration prediction, for the farms’ respective rotation ages.

LOCATION AND DESCRIPTION OF THE STUDY AREA

The study was conducted on Leyte Island, which is the eighth largest island in the Philippines. It is located in the Eastern Visayas region (Region 8), at about 9°45' N latitude and 123°50' - 126°00' E longitude. The island consists of two provinces, Leyte and Southern Leyte, and covers a total land area of about 750,000 ha. The capital cities of Leyte and Southern Leyte are Tacloban City and Maasin City, respectively. The smallholder tree farms for the study are located in the municipalities of Albuera, Matalom, Panan-awan and Badiang, Maasin City and Macrohon, Southern Leyte (Figure 1). The location and elevation of the farms were determined using a GPS receiver.

According to the Corona System of classification (PAGASA 2005), two types of climate exist in Leyte Province. In the east, climate is characterised by high pronounced rainfall from November to January while the climate of the west is characterised by rainfall that is relatively uniformly distributed throughout the year. Most of the sample farm belongs to the latter climate type. Sample smallholder tree farms were selected by purposive sampling

RESEARCH METHOD

A survey of all the existing smallholder tree farms in Leyte Island was conducted, then smallholder tree farms planted with common species with varying ages were selected by purposive sampling, taking into consideration the year of establishment and the area coverage for each species. Initial selection was made from the data of the ACIAR Smallholder Forestry Program based at the College of Forestry, Leyte State University, Baybay, Leyte. The data were compiled from the various studies conducted on smallholder tree farms in the province. Initial selection was made from the data of the ACIAR Smallholder Forestry Program based at the College of Forestry, Leyte State University, Baybay, Leyte. The data were compiled from the various studies conducted on smallholder tree farms in the province. The data provided a detailed description of the farms which included the operators’ name, location, species planted, approximated area planted per species, and the year of planting.
A criterion was set on the minimum area coverage of the sample farm to be selected. Data showed that most of the tree farms on Leyte Island cover a minimum of 0.5 ha. This served as the basis for the set criterion. Species with various representative age levels from the time of establishment to those ready for harvest were preferred. Selected farms were also verified in the field.

Figure 1. Location of the study sites in Leyte Island

Legend
- Study site
- Road network
- Municipal boundary
- Key city or municipality

0 5 10 20 30 40 kilometers
Based on the results of the survey, *Gmelina arborea* and *Swietenia macrophylla* tree farms are the most commonly planted species in smallholder tree farms in Leyte. Sample farms are privately owned with a minimum area per species of 0.75 ha, except for one field trial site included for *Swietenia macrophylla* species with 0.25 ha (Table 1).

For above-ground measurement, the field sampling protocol was adapted from Hairiah *et al.* (2001). For live tree biomass measurements, four 5m x 40m (200 m²) transects were randomly established per site with various species and age. Trees of more than 5 cm diameter at breast height (dbh) within 2.5m of each side of the 40m centreline were measured. For trees branching below breast height, the dbh of all branches was measured separately and added. Diameters of trees were measured with standard diameter tape. Heights were systematically taken from the first two corner trees of every plot using an Abney hand-level. The average height of the eight sample trees was obtained per farm. However, for a mature *S. macrophylla* field trial site, average height of large diameter trees was used.

Samples for soil bulk density were taken by driving an improvised metal canister (6 cm diameter and 10 cm height) into the 10-20 cm. Samples for organic carbon content were collected at the same spot were bulk density samples were taken. Composite samples of 1 kg were taken to the LSU Department of Agronomy and Soil Science for chemical analysis using the Walkley-Black method. Soil organic carbon storage was computed using the formula:

\[
\text{Bulk density (g/cc)} = \frac{\text{Oven-dried weight of soil}}{\text{Volume of canister}}
\]

\text{(Equation 1)}

\text{Soil Organic Carbon (SOC) per ha}

- Volume of one ha = 100 \times 100 \times 0.30 m
- Weight of soil (Mg) = bulk density x volume
- Carbon density \(\left(\frac{\text{Mg/ha}}{\text{Mg/ha}}\right)\) = weight of soil x % SOC

Determining root biomass is both expensive and laborious, thus conservative estimates are used based on literature (following the method outlined by Lasco and Sales, 2003), as a more practical approach of claiming carbon credits for this type of pool. Root biomass also varies considerably among the tropical forests, and procedural difficulties exist in recovering it from soil depths (Brown 1997). For this study, an allometric equation from Cairns *et al.* (1997), based on the above-ground biomass for tropical forests, was adapted to estimate the root biomass. The equation is illustrated as follows:

\[
\text{Root biomass} \left(\frac{\text{Mg/ha}}{\text{Mg/ha}}\right) = e^{-1.0587 + 0.8836 \times \ln(AGB)}
\]

\text{(Equation 2)}

where \(e\) represents the exponential function, \(\ln\) refers to natural logarithms, and \(AGB\) is above-ground biomass (in Mg). The growth of trees in most tree farms and plantations is affected by the initial spacing, silvicultural treatment such as fertiliser application, artificial pruning, thinning operations and site conditions (Brack and Wood, 1996). Thus, the entire management regime applied for each farm from the time of planting up to the present farm condition was noted. The information obtained was used to relate the silvicultural treatments applied and its effect on the growth of individual trees in the stand.
STAND LEVEL MEASUREMENTS OF VOLUME, BIOMASS AND CARBON DENSITY

From the direct measurement of the various parameters including dbh, merchantable height (mh) and total height (th) of individual trees contained inside the sample plots laid out for each tree farm, stand level parameters including the volume of standing trees, biomass and carbon density (Mg/ha) were derived. These values from the representative ages of the sample species served as the observed data to fit the Chapman-Richards functions.

Estimation of stand volume

Volume (m³/ha) was estimated using small sampling units by directly measuring the volume of each tree with a given dbh at 1.3 m, total height (th) and merchantable height (mh) measurements. The volume per tree was computed using the general formula: 0.7854*dbh²* mh/th*form factor (following Philip, 1994). Computation was done using this formula:

\[
\text{Form factor } = \frac{V_m}{g_{bh}} \text{ (th)}
\]

(Equation 3)

where \(V_m\) is merchantable volume over bark, defined by specific top diameter (m), \(g_{bh}\) is basal area at breast height (1.4 m), and th is total height (m).

Volume per hectare was estimated using the formula:

\[
V = \frac{\sum_{i=1}^{n} \left(\sum_{j=1}^{m_i} V_j \right)}{na}
\]

(Equation 4)

where \(V\)=average volume, estimated from \(n\) samples (m³/ha), \(V_j\) is the volume of individual trees measured on the \(i^{th}\) plot after measured standing (m³/ha), \(m_i\) is the total number of trees in the \(i^{th}\) plot (i= 1 to \(n\)), and \(n\) is the number of plots.
Table 1. Profile of the study sites

<table>
<thead>
<tr>
<th>Species</th>
<th>Municipality</th>
<th>Age of Species (year)</th>
<th>GPS location</th>
<th>Elevation (masl)</th>
<th>Climatic type</th>
<th>Area coverage (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gmelina arborea</td>
<td>Matalom</td>
<td>5</td>
<td>N 10° 17.042’ E 124° 47.738’</td>
<td>36</td>
<td>IV</td>
<td>1.0</td>
</tr>
<tr>
<td>Gmelina arborea</td>
<td>Maasin</td>
<td>7</td>
<td>N 10° 07.388’ E 124° 53.729’</td>
<td>38</td>
<td>IV</td>
<td>0.75</td>
</tr>
<tr>
<td>Gmelina arborea</td>
<td>Maasin</td>
<td>8</td>
<td>N 10° 10.699’ E 124° 46.392’</td>
<td>53</td>
<td>IV</td>
<td>1.70</td>
</tr>
<tr>
<td>Gmelina arborea</td>
<td>Macrohon</td>
<td>9</td>
<td>N 10° 0.2624’ E 124° 58.483’</td>
<td>16</td>
<td>IV</td>
<td>1.0</td>
</tr>
<tr>
<td>Gmelina arborea</td>
<td>Macrohon</td>
<td>10</td>
<td>N 10° 0.2846’ E 124° 58.258’</td>
<td>16</td>
<td>IV</td>
<td>0.75</td>
</tr>
<tr>
<td>Swietenia macrophylla</td>
<td>Albuera</td>
<td>5</td>
<td>N 10° 52.224’ E 124° 44.334’</td>
<td>16</td>
<td>IV</td>
<td>1.0</td>
</tr>
<tr>
<td>Swietenia macrophylla</td>
<td>Maasin</td>
<td>6</td>
<td>N 10° 08.537’ E 124° 48.158’</td>
<td>34</td>
<td>IV</td>
<td>1.0</td>
</tr>
<tr>
<td>Swietenia macrophylla</td>
<td>Macrohon</td>
<td>8</td>
<td>N 10° 4.462’ E 124° 56.630’</td>
<td>18</td>
<td>IV</td>
<td>0.75</td>
</tr>
<tr>
<td>Swietenia macrophylla</td>
<td>Maasin</td>
<td>38</td>
<td>N 10° 10.893’ E 124° 46.16’</td>
<td>37</td>
<td>IV</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note: All sample farms are privately owned except for a field trial site planted with 38 years old *S. macrophylla*.

Measurement of stand biomass and carbon density

In the Philippines, generic biomass regression equations developed by Brown (1997) from a large data pool of species sampled throughout the tropics have been used in local studies to determine indirectly the biomass and carbon storage of forest ecosystems. However, the use of these generic equations was found to overestimate the actual biomass of trees (Ketterings et al. 2000, Macandog and Delgado 2002, Hairiah et al. 2002), which shows the need to develop species-specific and site-specific equations that yield more reliable estimates of the characteristics of species and conditions of specific locations in the Philippines.

Species-specific allometric equations, which only require diameter as predictor variable for above-ground biomass, were used in this study. The equations were developed from previous studies involving destructive sampling of trees in various locations in the Philippines (Banaticla et al. 2004). These secondary data were subjected to regression analysis to derive specific biomass equations per species, as reported in Banaticla et al. (2004) The details on how these equations were derived were further discussed in the first draft report of the ACIAR Carbon Sequestration Study funded by the Australian Centre for International Agricultural Research (Banaticla et al. 2004) The carbon density (MgC/ha) of each farm was derived by multiplying the stand biomass density (Mg/ha) by 45% IPCC default value for C content.
Fitting the Chapman-Richards functions

The growth of a forest stand can be represented by the Chapman-Richards function (Venn et al. 2001). This function was used to predict the merchantable and total growth of each species in terms of volume (m3/ha). Biomass and carbon density of trees were predicted, using the function

$$\frac{dY}{dt} = \alpha Y^\beta - \gamma Y,$$

(Equation 5)

where $\alpha>0$, $\gamma>0$, $0<\beta<1$, Y is stand volume (m3/ha), t is time in years, and α, γ and β are parameters of the relationship.

Carbon Storage and Carbon Sequestration Prediction up to the Species’ Rotation Ages

Carbon density (MgC/ha) values were derived by multiplying the predicted biomass values (Mg/ha) from Chapman-Richards function with the carbon content default value of 0.45 based on the overall estimate of carbon content of biomass of trees as proposed by IPCC (1996). The amount of carbon stored over the species’ rotation age determined the carbon sequestration rate in MgC/ha/yr of a given farm.

RESULTS AND DISCUSSION

Biomass and Carbon Density

Using the Chapman-Richards function, the measured biomass from the field of five yemane (Gmelina arborea) smallholder tree farms, including the below-ground biomass, was fitted to predict the biomass of the stand up to its given rotation age, which was 15 years. From the results, the farm could reach between 2.18 Mg/ha and 142.10 Mg/ha (Table 2).

The carbon density value of the farm ranged from 0.98 to 63.94 MgC/ha. The predicted above-ground biomass of a six-year-old farm was 98.54 Mg C/ha which was higher than the biomass obtained from a plantation of the same species and age in Indonesia that was classified as having favourable site conditions at C density of 65 Mg/ha (Agus 2003). Thus, the yemane farm was classified as having favourable site conditions as well.

The predicted biomass density of mahogany (Swietenia macrophylla) tree farms reached 352.8 Mg/ha for a rotation of 25 years. The value obtained was comparable with a 16-year-old mahogany plantation in Mindanao with biomass density of 261 Mg/ha, and lower than a 44-year-old stand in Mt. Makiling, Laguna with biomass density of 590.40 Mg/ha. There was an insignificant increase in biomass from the early stage of establishment (Year 1) with the predicted values almost equal to zero. A 25-year-old mahogany reached a carbon density value of 158.76 MgC/ha which was higher than that of a 15-year-old yemane farm.
Table 2. Predicted biomass and carbon density for yemane and mahogany smallholder tree farms (MgC/ha)

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Biomass density (Mg/ha)</th>
<th>Carbon density (MgC/ha)</th>
<th>Age (years)</th>
<th>Biomass density (Mg/ha)</th>
<th>Carbon density (MgC/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gmelina arborea</td>
<td></td>
<td></td>
<td>Swietenia macrophylla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.18</td>
<td>0.98</td>
<td>9</td>
<td>128.26</td>
<td>57.72</td>
</tr>
<tr>
<td>2</td>
<td>14.78</td>
<td>6.65</td>
<td>10</td>
<td>133.08</td>
<td>59.89</td>
</tr>
<tr>
<td>3</td>
<td>36.17</td>
<td>16.28</td>
<td>11</td>
<td>136.42</td>
<td>61.39</td>
</tr>
<tr>
<td>4</td>
<td>59.81</td>
<td>26.91</td>
<td>12</td>
<td>138.72</td>
<td>62.42</td>
</tr>
<tr>
<td>5</td>
<td>81.19</td>
<td>36.54</td>
<td>13</td>
<td>140.29</td>
<td>63.13</td>
</tr>
<tr>
<td>6</td>
<td>98.54</td>
<td>44.34</td>
<td>14</td>
<td>141.37</td>
<td>63.61</td>
</tr>
<tr>
<td>7</td>
<td>111.74</td>
<td>50.28</td>
<td>15</td>
<td>142.10</td>
<td>63.94</td>
</tr>
<tr>
<td>8</td>
<td>121.39</td>
<td>54.62</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Below-Ground Measurements of Soil Carbon

Bulk density values of yemane ranged from 0.79 to 1.13 g/cc while mahogany farms had 0.83 to 1.04 g/cc. Lower bulk density measurement indicated a higher organic matter content in the soil of the sample farms (Brady 1974). Based on the results, the seven-year-old yemane farm had the highest C density in the soil with 121.52 MgC/ha.

The results indicated that the age of the farm is not related to its soil C density. Similar findings were obtained in an afforested area, where carbon change of the soil sampled below a depth of 10 cm, had no significant relationship with stand age (Polglase et al. 2000). Hence, the differences in values were due to the extent of disturbances in the soil (Sales 1998) and decrease with depth (Banaticla 2003).

Measurement of Carbon in Root Biomass

The root biomass obtained, based on the AGB (Equation 2) of yemane smallholder tree farms, ranged from 13.52 to 24.86 Mg/ha with the oldest sample stand having the highest root biomass value while an eight-year-old stand had the lowest value. The mahogany stand obtained 2.43 to 53.98 Mg/ha root biomass. Total carbon stock of above- and below-ground, of the yemane smallholder tree farms on Leyte Island, ranged from 74.17 to 171.96 MgC/ha. These values were relatively lower than the total C storage of a 15-year-old yemane plantation as reported by Philippine National Oil Company (PNOC) Geothermal Reserve in Ormoc City with 294.16 MgC/ha (Lasco et al. 2001).
Mahogany farms had total C stocks of 30.19 MgC/ha from a five-year-old stand to 222.84 MgC/ha from the oldest stand. The values obtained were comparable with the total C density above-ground, below-ground and in the soil of a nine-year-old mahogany plantation inside the PNOC with 192 MgC/ha.

Table 3 presents the amount of C stock in terms of percentage of above- and below-ground (root and soil) biomass and carbon density based on the total computed values from the sample farms. More than 80% of biomass was contained above-ground for yemane and mahogany smallholder tree farms, while root biomass comprised less than 20% of the total biomass. It was found that about 60% of carbon was contained in the soil, 34% was tied up in the AGB of the smallholder tree farms, and 6% was in the roots.

Table 3. Percent biomass carbon density values of various pools of yemane and mahogany tree farms

<table>
<thead>
<tr>
<th>Species</th>
<th>Age (years)</th>
<th>AGB (%)</th>
<th>Root biomass (%)</th>
<th>AGB carbon (%)</th>
<th>Root carbon (%)</th>
<th>Soil Carbon (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. arborea</td>
<td>5</td>
<td>82.46</td>
<td>17.54</td>
<td>40.57</td>
<td>8.63</td>
<td>50.8</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>83.01</td>
<td>16.99</td>
<td>24.35</td>
<td>4.98</td>
<td>70.67</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>82.36</td>
<td>17.64</td>
<td>31.78</td>
<td>6.80</td>
<td>61.41</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>83.23</td>
<td>16.77</td>
<td>33.5</td>
<td>6.75</td>
<td>59.75</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>83.50</td>
<td>16.50</td>
<td>40.53</td>
<td>8.01</td>
<td>51.46</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>82.91</td>
<td>17.09</td>
<td>34.15</td>
<td>7.03</td>
<td>58.82</td>
</tr>
<tr>
<td>S. macrophylla</td>
<td>5</td>
<td>78.84</td>
<td>21.16</td>
<td>13.53</td>
<td>3.63</td>
<td>82.84</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>80.96</td>
<td>19.04</td>
<td>13.29</td>
<td>3.12</td>
<td>83.59</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>82.79</td>
<td>17.21</td>
<td>25.76</td>
<td>5.35</td>
<td>68.89</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>84.86</td>
<td>15.14</td>
<td>61.09</td>
<td>10.9</td>
<td>28.01</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>81.86</td>
<td>18.14</td>
<td>28.42</td>
<td>5.75</td>
<td>65.83</td>
</tr>
</tbody>
</table>

In a natural forest in Leyte, about 51% of carbon was stored in the biomass and 49% was found in the soil (Lasco et al. 2001). The findings agreed with the data reported in the literature where the soil was found to store at least 30% of total forest carbon or as much as the biomass (Lugo and Brown, 1992; Moura-Costa 1996). These values indicated the important role of soils in storing carbon and the need to conserve soil organic matter as one possible strategy in enhancing carbon storage. Soil organic matter can conserved by applying soil management practices such as minimum tillage and adoption of soil erosion control measures (Lasco et al. 2001c).

The average grasslands in Leyte had a total biomass and carbon density of 28.5 and 12.1 Mg/ha, respectively (Lasco et al., 2001). The results of the study were almost equivalent with a three-year-old yemane stand and a six-year-old mahogany stand. This meant an increase of more than 80% in biomass and carbon density if grasslands would be planted with yemane, and more than 90% increase in biomass and C density if mahogany stands would be established (Table 5). These would result to a net carbon storage of 51.84 and 146.66 MgC/ha from yemane and mahogany stands, respectively. However, computation was based on the species’ rotation age of 15 years and 25 years for yemane and mahogany, respectively, and the study assumed that grasslands would have a constant C storage.

Lasco et al. (2001) found that on average grasslands in Leyte have a total biomass and carbon density of 28.5 and 12.1 Mg/ha, respectively. These levels are similar to those of a three-year-old yemane stand and a six-year-old mahogany stand. There would be an increase of more than 80% in biomass and carbon density if grasslands were planted with yemane, and more than 90% increase if mahogany stands were established (Table 5). The
net carbon storage would be 51.84 and 146.66 MgC/ha from yemane and mahogany stands, respectively. However, this computation is based on rotation ages of 15 years and 25 years for yemane and mahogany, respectively, and assumes that grasslands would have a constant C storage.

Carbon Storage and Carbon Sequestration of Mahogany and Yemane Tree Farms

Table 4 reports the farm level carbon storage or density and sequestration of yemane and mahogany. The C density data predicted by the Chapman-Richards function includes the above-ground biomass, roots and soil. The average storage estimates are 44.58 and 93.64 MgC/ha for yemane and mahogany stands, respectively. Short rotation species including yemane does not achieve a high C storage (Dewar and Cannell 1991) as compared to mahogany. In addition, agroforestry and plantation farms have C storage ranging from 4% to 27% lower than that of an undisturbed forest (Hairiah 2001).

Table 4. Tree farm level C storage and sequestration of smallholder tree farms

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>C storage (Mg/ha)</th>
<th>C sequestration (MgC/ha)</th>
<th>Age (years)</th>
<th>C storage (Mg/ha)</th>
<th>C sequestration (MgC/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.98</td>
<td>0.98</td>
<td>9</td>
<td>57.72</td>
<td>6.41</td>
</tr>
<tr>
<td>2</td>
<td>6.65</td>
<td>3.33</td>
<td>10</td>
<td>59.89</td>
<td>5.99</td>
</tr>
<tr>
<td>3</td>
<td>16.28</td>
<td>5.43</td>
<td>11</td>
<td>61.39</td>
<td>5.58</td>
</tr>
<tr>
<td>4</td>
<td>26.91</td>
<td>6.73</td>
<td>12</td>
<td>62.42</td>
<td>5.20</td>
</tr>
<tr>
<td>5</td>
<td>36.54</td>
<td>7.31</td>
<td>13</td>
<td>63.13</td>
<td>4.86</td>
</tr>
<tr>
<td>6</td>
<td>44.34</td>
<td>7.39</td>
<td>14</td>
<td>63.61</td>
<td>4.54</td>
</tr>
<tr>
<td>7</td>
<td>50.28</td>
<td>7.18</td>
<td>15</td>
<td>63.94</td>
<td>4.26</td>
</tr>
<tr>
<td>8</td>
<td>54.62</td>
<td>6.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>44.58</td>
<td>5.47</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With the assumption that all silvicultural treatments and site conditions are the same, C sequestration or average annual carbon accumulation of yemane and mahogany smallholder tree farms, based on the biomass change, is 5.47 and 5.94 MgC/ha/yr, respectively. The values obtained are lower than the average C sequestration rate of tree plantations in the Philippines, averaging about 8.0 MgC/ha/yr, but varying with site conditions (Lasco 2004).
Table 5. Biomass and carbon density estimates of grassland and smallholder tree farms in Leyte Island

<table>
<thead>
<tr>
<th>Forestland use</th>
<th>Biomass density (Mg/ha)</th>
<th>Carbon density (MgC/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grassland</td>
<td>28.5</td>
<td>12.1</td>
</tr>
<tr>
<td>Gmelina arborea</td>
<td>142.1</td>
<td>63.9</td>
</tr>
<tr>
<td>Swietenia macrophylla</td>
<td>352.8</td>
<td>158.8</td>
</tr>
</tbody>
</table>

CONCLUSIONS AND IMPLICATIONS

Applying the Chapman Richards growth function to selected yemane and mahogany smallholder tree farms on Leyte Island yields estimates of a carbon sequestration rate of more than 5 MgC/ha/yr. The carbon storage and sequestration potential obtained varied with species and age. It was expected that fast-growing species, including yemane, can store less carbon than the slow-growing mahogany due to their differences in wood density and rotation age, and this study affirmed the expectation.

About 30% of carbon was tied up in the AGB of the smallholder tree farms investigated, 6% was tied up in the roots, and more than 60% was contained in the soil. This finding has implications for soil conservation and management; minimum or zero tillage will protect this important carbon pool. However, many studies reveal that in tropical soils, carbon storage in the soil decreases as the stand matures because C is tied up in the biomass.

If grassland areas, which have the capacity to store 12 MgC/ha, are planted with these tree species, then the stands can increase storage capacity up to 80% and 90% for yemane and mahogany, respectively, depending on the maximum age when the trees are harvested and the type of products derived from them. Huge areas of barren or unproductive land in the Philippines that have been converted into smallholder tree farms could definitely help attain sustainable development and mitigate greenhouse gases. The establishment of tree farms could also answer the short-term needs of the farmers especially when trees are integrated with cash crops or livestock as immediate sources of income. Tree planting could help alleviate the warming of the environment at the micro climatic and global levels.

Further studies on the carbon storage and sequestration of other smallholder tree farms with emphasis on the indigenous species would be desirable because of their advantages over introduced species including acclimatisation in the area. Moreover, species with potentially high C sequestration capacity should be screened for each land use so that species that can absorb C fastest can be prioritised in tree planting. These studies would help prepare all sectors in case the Kyoto Protocol materializes. Under the Clean Development Mechanism, only reforestation (plantations established in 1990 and above) and afforestation (areas barren for 50 years) are qualified. Smallholder tree farms and agroforestry could be included, although many issues and debates continue regarding this international agreement.

Carbon density of the yemane and mahogany stands was found to be dependent on the biomass that they would produce. Researchers should therefore find ways to improve dry matter content by employing biological technologies, e.g. mycorhizal application to attain high growth rates in the stand.

ACKNOWLEDGMENT

The authors would like to thank the Australian Centre for International Research on Agriculture (ACIAR) for funding this study.
REFERENCES

Agus, C. (2003), ‘Carbon sequestration in fast growing plantation forest in Indonesia’, a paper presented at the International Conference on Tropical Forests and Climate Change: Carbon Sequestration and CDM, Manila, the Philippines, 21-22 October 2003, pp. 143-149.

Lasco, R.D. and Pulhin, F.B. (1998), *Philippine Forestry and Carbon Dioxide (CO₂) Sequestration: Opportunities for Mitigating Climate Change*, Environmental Forestry Programme, College of Forestry and Natural Resources, University of the Philippines Los Banos, College, Laguna.

