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Introduction

This manual was prepared during training events 
held in East- and West-Africa on the analysis of tree 
diversity data. These training events targeted data 
analysis of tree diversity data that were collected by 
scientists of the World Agroforestry Centre (ICRAF) 
and collaborating institutions. Typically, data were 
collected on the tree species composition of quadrats 
or farms. At the same time, explanatory variables 
such as land use and household characteristics were 
collected. Various hypotheses on the influence 
of explanatory variables on tree diversity can be 
tested with such datasets. Although the manual 
was developed during research on tree diversity 
on farms in Africa, the statistical methods can be 
used for a wider range of organisms, for different 
hierarchical levels of biodiversity, and for a wider 
range of environments.

These materials were compiled as a second-
generation development of the Biodiversity Analysis 
Package, a CD-ROM compiled by Roeland Kindt 
with resources and guidelines for the analysis of 
ecological and biodiversity information. Whereas 
the Biodiversity Analysis Package provided a range 
of tools for different types of analysis, this manual 
is accompanied by a new tool (Biodiversity.R) 
that offers a single software environment for all 
the analyses that are described in this manual. 
This does not mean that Biodiversity.R is the 
only recommended package for a particular type 
of analysis, but it offers the advantage for training 
purposes that users only need to be introduced to 
one software package for statistically sound analysis 
of biodiversity data.

It is never possible to produce a guide to all 
the methods that will be needed for analysis of 
biodiversity data. Data analysis questions are 
continually advancing, requiring ever changing 
data collection and analysis methods. This 
manual focuses on the analysis of species survey 
data. We describe a number of methods that can 
be used to analyse hypotheses that are frequently 
important in biodiversity research. These are not 
the only methods that can be used to analyse these 
hypotheses, and other methods will be needed 
when the focus of the biodiversity research is 
different.

Effective data analysis requires imagination and 
creativity. However, it also requires familiarity 
with basic concepts, and an ability to use a set 
of standard tools. This manual aims to provide 
that. It also points the user to other resources that 
develop ideas further.

Effective data analysis also requires a sound and 
up to date understanding of the science behind 
the investigation. Data analysis requires clear 
objectives and hypotheses to investigate. These 
have to be based on, and push forward, current 
understanding. We have not attempted to link the 
methods described here to the rapidly changing 
science of biodiversity and community ecology. 
Data analysis does not end with production 
of statistical results. Those results have to be 
interpreted in the light of other information about 
the problem. We can not, therefore, discuss fully 
the interpretation of the statistical results, or the 
further statistical analyses they may lead to.
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Overview of methods described in 
this manual

On the following page, a general diagram is 
provided that describes the data analysis questions 
that you can ask when analysing biodiversity 
based on the methodologies that are provided in 
this manual. Each question is discussed in further 
detail in the respective chapter. The arrows 
indicate the types of information that are used 
in each method. All information is derived from 
either the species data or the environmental data 
of the sites. Chapter 2 describes the species and 
environmental data matrices in greater detail.

Some methods only use information on species. 
These methods are depicted on the left-hand side 
of the diagram. They are based on biodiversity 
statistics that can be used to compare the levels 
of biodiversity between sites, or to analyse how 
similar sites are in species composition.

The other methods use information on both 
species and the environmental variables of the 
sites. These methods are shown on the right-
hand side of the diagram. These methods provide 
insight into the influence of environmental 

variables on biodiversity. The analysis methods 
can reveal how much of the pattern in species 
diversity can be explained by the influence of the 
environmental variables. Knowing how much of 
a pattern is explained will especially be useful if 
the research was conducted to arrive at options 
for better management of biodiversity. Note 
that in this context, ‘environmental variables’ 
can include characteristics of the social and 
economic environment, not only the biophysical 
environment. 

You may have noticed that Chapter 3 did 
not feature in the diagram. The reason is that 
this chapter describes how the Biodiversity.R 
software can be installed and used to conduct 
all the analyses described in the manual, whereas 
you may choose to conduct the analysis with 
different software. For this reason, the commands 
and menu options for doing the analysis in 
Biodiversity.R are separated from the descriptions 
of the methods, and placed at the end of each 
chapter.
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CHAPTER 1

Sampling

Sampling
Choosing a way to sample and collect data can be 
bewildering. If you find it hard to decide exactly 
how it should be done then seek help. Questions 
about sampling are among the questions that are 
most frequently asked to biometricians and the 
time to ask for assistance is while the sampling 
scheme is being designed. Remember: if you go 
wrong with data analysis it is easy to repeat it, but 
if you collect data in inappropriate ways you can 
probably not repeat it, and your research will not 
meet its objectives.

Although there are some particular methods 
that you can use for sampling, you will need to 
make some choices yourself. Sample design is the 
art of blending theoretical principles with practical 
realities. It is not possible to provide a catalogue of 
sampling designs for a series of situations – simply 
too much depends on the objectives of the survey 
and the realities in the field.

Sampling design has to be based on specific 
research objectives and the hypotheses that you 
want to test. When you are not clear about what 
it is that you want to find out, it is not possible to 
design an appropriate sampling scheme.

Research hypotheses
The only way to derive a sampling scheme is to 
base it on a specific research hypothesis or research 
objective. What is it that you want to find out? 
Will it help you or other researchers when you 
find out that the hypothesis holds true? Will the 
results of the study point to some management 
decisions that could be taken?

The research hypotheses should indicate the 3 
basic types of information that characterize each 
piece of data: where the data were collected, 
when the data were collected, and what type of 
measurement was taken. The where, when and 
what are collected for each sample unit. A sample 
unit could be a sample plot in a forest, or a farm in 
a village. Some sample units are natural units such 
as fields, farms or forest gaps. Other sample units 
are subsamples of natural units such as a forest 
plot that is placed within a forest. Your sampling 
scheme will describe how sample units are defined 
and which ones are selected for measurement. 

The objectives determine what data, the variables 
measured on each sampling unit. It is helpful to 
think of these as response and explanatory variables, 
as described in the chapter on data preparation. 
The response variables are the key quantities that 
your objectives refer to, for example ‘tree species 
richness on small farms’. The explanatory variables 
are the variables that you expect, or hypothesize, 
to influence the response. For example, your 
hypothesis could be that ‘tree species richness on 
small farms is influenced by the level of market 
integration of the farm enterprise because market 
integration determines which trees are planted and 
retained’. In this example, species richness is the 
response variable and level of market integration 
is an explanatory variable. The hypothesis refers 
to small farms, so these should be the study units.  
The ‘because…’ part of the hypothesis adds much 
value to the research, and investigating it requires 
additional information on whether species were 
planted or retained and why. 
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Note that this manual only deals with survey data. 
The only way of proving cause-effect relationships 
is by conducting well-designed experiments 
– something that would be rather hard for this 
example! It is common for ecologists to draw 
conclusions about causation from relationships 
founding surveys. This is dangerous, but inevitable 
when experimentation is not feasible. The risk of 
making erroneous conclusions is reduced by: (a) 
making sure other possible explanations have been 
controlled or allowed for; (b) having a mechanistic 
theory model that explains why the cause-effect 
may apply; and (c) finding the same relationship 
in many different studies. However, in the end 
the conclusion depends on the argument of the 
scientist rather than the logic of the research 
design. Ecology progresses by scientists finding 
new evidence to improve the inevitably incomplete 
understanding of cause and effect from earlier 
studies.

When data are collected is important, both to 
make sure different observations are comparable 
and because understanding change – trends, or 
before and after an intervention – is often part of 
the objective. Your particular study may not aim 
at investigating trends, but investigating changes 
over time may become the objective of a later 
study. Therefore you should also document when 
data were collected.

This chapter will mainly deal with where data 
are collected. This includes definition of the 
survey area, of the size and shape of sample units 
and plots and of how sample plots are located 
within the survey area.

Survey area
You need to make a clear statement of the survey 
area for which you want to test your hypothesis. 
The survey area should have explicit geographical 
(and temporal) boundaries. The survey area 
should be at the ecological scale of your research 
question. For example, if your research hypothesis 

is something like ‘diversity of trees on farms 
decreases with distance from Mount Kenya 
Forest because seed dispersal from forest trees is 
larger than seed dispersal from farm trees’, then 
it will not be meaningful to sample trees in a 
strip of 5 metres around the forest boundary and 
measure the distance of each tree from the forest 
edge. In this case we can obviously not expect to 
observe differences given the size of trees (even if 
we could determine the exact distance from the 
edge within the small strip). But if the 5 m strip 
is not a good survey area to study the hypothesis, 
which area is? You would have to decide that on 
the basis of other knowledge about seed dispersal, 
about other factors which dominate the process 
when you get too far from Mt Kenya forest, and 
on practical limitations of data collection. You 
should select the survey area where you expect to 
observe the pattern given the ecological size of 
the phenomenon that you are investigating.

If the research hypothesis was more general, for 
example ‘diversity of trees on East African farms 
decreases with distance from forests because more 
seeds are dispersed from forest trees than from farm 
trees’, then we will need a more complex strategy 
to investigate it. You will certainly have to study 
more than one forest to be able to conclude this 
is a general feature of forests, not just Mt Kenya 
forest.  You will therefore have to face questions 
of what you mean by a ‘forest’. The sampling 
strategy now needs to determine how forests are 
selected as well as how farms around each forest 
are sampled. 

A common mistake is to restrict data collection 
to only part of the study area, but assume the 
results apply to all of it (see Figure 1.1). You can 
not be sure that the small window actually sampled 
is representative of the larger study area.

An important idea is that bias is avoided. Think 
of the case in which samples are only located in 
sites which are easily accessible. If accessibility 
is associated with diversity (for example because 
fewer trees are cut in areas that are more difficult 
to access), then the area that is sampled will not 
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be representative of the entire survey area. An 
estimate of diversity based only on the accessible 
sites would give biased estimates of the whole 
study area. This will especially cause problems if 
the selection bias is correlated with the factors that 
you are investigating. For example, if the higher 
diversity next to the forest is caused by a larger 
proportion of areas that are difficult to access and 
you only sample areas that are easy to access, then 
you may not find evidence for a decreasing trend 
in diversity with distance from the forest. In this 
case, the dataset that you collected will generate 
estimates that are biased since the sites are not 
representative of the entire survey area, but only 
of sites that are easy to access.

The sample plots in Figure 1.1 were selected 
from a sampling window that covers part of the 
study area. They were selected using a method 
that allowed any possible plot to potentially 
be included. Furthermore, the selection was 
random. This means that inferences based on 
the data apply to the sampling window. Any 
particular sample will not give results (such as 
diversity, or its relationship with distance to 
forest) which are equal to those from measuring 
the whole sampling window. But the sampling 
will not predispose us to under- or overestimate 
the diversity, and statistical methods will generally 
allow us to determine just how far from the ‘true’ 
answer any result could be. 
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Figure 1.1  When you sample within a smaller window, you may not have sampled the entire range of conditions of 
your survey area. The sample may therefore not be representative of the entire survey area. The areas shown are 
three types of landuse and the sample window (with grey background). Sample plots are the small rectangles.
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Size and shape of sample units or 
plots
A sample unit is the geographical area or plot on 
which you actually collected the data, and the 
time when you collected the data. For instance, 
a sample unit could be a 50 × 10 m2 quadrat (a 
rectangular sample plot) in a forest sampled on 9th 

May 2002. Another sample unit could be all the 
land that is cultivated by a family, sampled on 10th 

December 2004. In some cases, the sample plot 
may be determined by the hypothesis directly. If 
you are interested in the influence of the wealth 
of farmers on the number of tree species on their 
farm, then you could opt to select the farm as the 
sample plot. Only in cases where the size of this 
sample plot is not practical would you need to 
search for an alternative sample plot. In the latter 
case you would probably use two sample units 
such as farms (on which you measure wealth) and 
plots within farms (on which you measure tree 
species, using the data from plots within a farm to 
estimate the number of species for the whole farm 
to relate to wealth).

The size of the quadrat will usually influence 
the results. You will normally find more species 
and more organisms in quadrats of 100 m2 than 
in quadrats of 1 m2. But 100 dispersed 1 m2 plots 
will probably contain more species than a single 
100 m2 plot. If the aim is not to find species but 
understanding some ecological phenomenon, then 
either plot size may be appropriate, depending on 
the scale of the processes being studied.

The shape of the quadrat will often influence 
the results too. For example, it has been observed 
that more tree species are observed in rectangular 
quadrats than in square quadrats of the same area. 
The reason for this phenomenon is that tree species 
often occur in a clustered pattern, so that more 
trees of the same species will be observed in square 
quadrats. When quadrats are rectangular, then the 
orientation of the quadrat may also become an 
issue. Orienting the plots parallel or perpendicular 
to contour lines on sloping land may influence 

the results, for instance. As deciding whether trees 
that occur near the edge are inside or outside the 
sample plot is often difficult, some researchers find 
circular plots superior since the ratio of edge-to-
area is smallest for circles. However marking out a 
circular plot can be much harder than marking a 
rectangular one. This is an example of the trade off 
between what may be theoretically optimal and 
what is practically best. Balancing the trade off is a 
matter of practical experience as well as familiarity 
with the principles.

As size and shape of the sample unit can 
influence results, it is best to stick to one size and 
shape for the quadrats within one study. If you 
want to compare the results with other surveys, 
then it will be easier if you used the same sizes 
and shapes of quadrats. Otherwise, you will need 
to convert results to a common size and shape of 
quadrat for comparisons. For some variables, such 
conversion can easily be done, but for some others 
this may be quite tricky. Species richness and 
diversity are statistics that are influenced by the 
size of the sample plot. Conversion is even more 
complicated since different methods can be used to 
measure sample size, such as area or the number of 
plants measured (see chapter on species richness). 
The average number of trees is easily converted 
to a common sample plot size, for example 1 ha, 
by multiplying by the appropriate scaling factor. 
This can not be done for number of species or 
diversity. Think carefully about conversion, and 
pay special attention to conversions for species 
richness and diversity. In some cases, you may not 
need to convert to a sample size other than the one 
you used – you may for instance be interested in 
the average species richness per farm and not in 
the average species richness in areas of 0.1 ha in 
farmland. Everything will depend on being clear 
on the research objectives.

One method that will allow you to do some easy 
conversions is to split your quadrat into sub-plots 
of smaller sizes. For example, if your quadrat is 40 
× 5 m2, then you could split this quadrat into eight 
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5 × 5 m2 subplots and record data for each subplot.  
This procedure will allow you to easily convert to 
quadrat sizes of 5 × 5 m2, 10 × 5 m2, 20 × 5 m2 and 
40 × 5 m2, which could make comparisons with 
other surveys easier.

Determining the size of the quadrat is one of the 
tricky parts of survey design. A quadrat should be 
large enough for differences related to the research 
hypothesis to become apparent. It should also 
not be too large to become inefficient in terms 
of cost, recording fatigue, or hours of daylight. 
As a general rule, several small quadrats will give 
more information than few large quadrats of 
the same total area, but will be more costly to 
identify and measure. Because differences need 
to be observed, but observation should also use 
resources efficiently, the type of organism that is 
being studied will influence the best size for the 
quadrat. The best size of the quadrat may differ 
between trees, ferns, mosses, butterflies, birds 
or large animals. For the same reason, the size 
of quadrat may differ between vegetation types. 
When studying trees, quadrat sizes in humid 
forests could be smaller than quadrat sizes in semi-
arid environments.

As some rough indication of the size of the sample 
unit that you could use, some of the sample sizes 
that have been used in other surveys are provided 
next. Some surveys used 100 × 100 m2 plots for 
differences in tree species composition of humid 
forests (Pyke et al. 2001, Condit et al. 2002), or 
for studies of forest fragmentation (Laurance et al. 
1997). Other researchers used transects (sample 
plots with much longer length than width) such as 
500 × 5 m2 transects in western Amazonian forests 
for studies of differences in species composition 
for certain groups of species (Tuomisto et al. 
2003). Yet other researchers developed methods 
for rapid inventory such as the method with 
variable subunits developed at CIFOR that has a 
maximum size of 40 × 40 m2, but smaller sizes 
when tree densities are larger (Sheil et al. 2003).

Many other quadrat sizes can be found in other 
references. It is clear that there is no common 
or standard sample size that is being used 
everywhere. The large range in values emphasizes 
our earlier point that there is no fixed answer to 
what the best sampling strategy is. It will depend 
on the hypotheses, the organisms, the vegetation 
type, available resources, and on the creativity of 
the researcher. In some cases, it may be worth 
using many small sample plots, whereas in other 
cases it may be better to use fewer larger sample 
plots. A pilot survey may help you in deciding 
what size and shape of sample plots to use for 
the rest of the survey (see below: pilot testing of 
the sampling protocol). Specific guidelines on 
the advantages and disadvantages of the various 
methods is beyond the scope of this chapter (an 
entire manual could be devoted to sampling 
issues alone) and the best advise is to consult a 
biometrician as well as ecologists who have done 
similar studies.

Simple random sampling
Once you have determined the survey area and 
the size of your sampling units, then the next 
question is where to take your samples. There are 
many different methods by which you can place 
the samples in your area. 

Simple random sampling involves locating 
plots randomly in the study area. Figure 1.2 gives 
an example where the coordinates of every sample 
plot were generated by random numbers. In this 
method, we randomly selected a horizontal and 
vertical position. Both positions can be calculated 
by multiplying a random number between 0 
and 1 with the range in positions (maximum 
– minimum), and adding the result to the 
minimum position. If the selected position falls 
outside the area (which is possible if the area is 
not rectangular), then a new position is selected.
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Figure 1.2  Simple random sampling by using random numbers to determine the position of the sample plots. Using 
this method there is a risk that regions of low area such as that under Landuse 1 are not sampled.

Figure 1.3  For simple random sampling, it is better to first generate a grid of plots that covers the entire area such 
as the grid shown here.
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Simple random sampling is an easy method to 
select the sampling positions (it is easy to generate 
random numbers), but it may not be efficient in 
all cases. Although simple random sampling is the 
basis for all other sampling methods, it is rarely 
optimal for biodiversity surveys as described next. 
Simple random sampling may result in selecting 
all your samples within areas with the same 
environmental characteristics, so that you can not 
test your hypothesis efficiently. If you are testing a 
hypothesis about a relationship between diversity 
and landuse, then it is better to stratify by the 
type of landuse (see below: stratified sampling). 
You can see in Figure 1.2 that one type of landuse 
was missed by the random sampling procedure. 
A procedure that ensures that all types of landuse 
are included is better than repeating the random 
sampling procedure until you observe that all 
the types of landuse were included (which is not 
simple random sampling any longer).

It may also happen that the method of using 
random numbers to select the positions of 
quadrats will cause some of your sample units to 
be selected in positions that are very close to each 
other. In the example of Figure 1.2, two sample 
plots actually overlap. To avoid such problems, 
it is theoretically better to first generate the 
population of all the acceptable sample plots, 
and then take a simple random sample of those. 
When you use random numbers to generate the 
positions, the population of all possible sample 

plots is infinite, and this is not the best approach. 
It is therefore better to first generate a grid of 
plots that covers the entire survey area, and then 
select the sample plots at random from the grid. 

Figure 1.3 shows the grid of plots from which 
all the sample plots can be selected. We made 
the choice to include only grid cells that fell 
completely into the area. Another option would 
be to include plots that included boundaries, 
and only sample the part of the grid cell that falls 
completely within the survey area – and other 
options also exist.

Once you have determined the grid, then 
it becomes relatively easy to randomly select 
sample plots from the grid, for example by giving 
all the plots on the grid a sequential number and 
then randomly selecting the required number 
of sample plots with a random number. Figure 
1.4 shows an example of a random selection of 
sample plots from the grid. Note that although 
we avoided ending up with overlapping sample 
plots, some sample plots were adjacent to each 
other and one type of landuse was not sampled.

Note also that the difference between selecting 
points at random and gridding first will only be 
noticeable when the quadrat size is not negligible 
compared to the study area. A pragmatic solution 
to overlapping quadrats selected by simple 
random sampling of points would be to reject 
the second sample of the overlapping pair and 
choose another random location.
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Figure 1.5  Systematic sampling ensures that data are collected from the entire survey area.

Figure 1.4.  Simple random sampling from the grid shown in Figure 1.3.
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Systematic sampling
Systematic or regular sampling selects sample 
plots at regular intervals. Figure 1.5 provides 
an example. This has the effect of spreading the 
sample out evenly through the study area. A square 
or rectangular grid will also ensure that sample 
plots are evenly spaced.

Systematic sampling has the advantage over 
random sampling that it is easy to implement, 
that the entire area is sampled and that it avoids 
picking sample plots that are next to each other. 
The method may be especially useful for finding 
out where a variable undergoes rapid changes. 
This may particularly be interesting if you sample 
along an environmental gradient, such as altitude, 
rainfall or fertility gradients. For such problems 
systematic sampling is probably more efficient – 
but remember that we are not able in this chapter 
to provide a key to the best sampling method.

Figure 1.6  Random selection of sample plots from a grid. The same grid was used as in Figure 1.5.

You could use the same grid depicted in Figure 
1.5 for simple random sampling, rather than the 
complete set of plots in Figure 1.3. By using this 
approach, you can guarantee that sample plots will 
not be selected that are too close together. The 
grid allows you to control the minimum distance 
between plots. By selecting only a subset of sample 
plots from the entire grid, sampling effort is 
reduced. For some objectives, such combination 
of simple random sampling and regular sampling 
intervals will offer the best approach. Figure 1.6 
shows a random selection of sample plots from the 
grid depicted in Figure 1.5.

If data from a systematic sample are analysed 
as if they came from a random sample, inferences 
may be invalidated by correlations between 
neigbouring observations. Some analyses of 
systematic samples will therefore require an 
explicitly spatial approach.
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Figure 1.8  Stratified sampling ensures that observations are taken in each stratum. Sample plots are randomly 
selected for each landuse from a grid.

Figure 1.7.  Systematic sampling after random selection of the position of the first sample plot.
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Another problem that could occur with systematic 
sampling is that the selected plots coincide with a 
periodic pattern in the study area. For example, 
you may only sample in valley bottoms, or you may 
never sample on boundaries of fields. You should 
definitely be alert for such patterns when you do 
the actual sampling. It will usually be obvious if a 
landscape can have such regular patterns.

Systematic sampling may involve no 
randomization in selecting sample plots. Some 
statistical analysis and inference methods are not 
then suitable. An element of randomization can 
be introduced in your systematic sampling by 
selecting the position of the grid at random. 
Figure 1.7 provides an example of selecting sample 
plots from a sampling grid with a random origin 
resulting in the same number of sample plots and 
the same minimum distance between sample plots 
as in Figure 1.6.

Stratified sampling
Stratified sampling is an approach in which 
the study area is subdivided into different 
strata, such as the three types of landuses of the 
example (Landuse 1, Landuse 2 and Landuse 3, 
figures 1.1-1.9). Strata do not overlap and cover 
the entire survey area. Within each stratum, a 
random or systematic sample can be taken. Any 
of the sampling approaches that were explained 
earlier can be used, with the only difference that 
the sampling approach will now be applied to 
each stratum instead of the entire survey area. 
Figure 1.8 gives an example of stratified random 
sampling with random selection of maximum 10 
sample plots per stratum from a grid with random 
origin.

Stratified sampling ensures that data are 
collected from each stratum. The method will also 
ensure that enough data are collected from each 
stratum. If stratified sampling is not used, then a 
rare stratum could be missed or only provide one 
observation. If a stratum is very rare, you have a 

high chance of missing it in the sample. A stratum 
that only occupies 1% of the survey area will be 
missed in over 80% of simple random samples of 
size 20.

Stratified sampling also avoids sample plots 
being placed on the boundary between the strata 
so that part of the sample plot is in one stratum 
and another part is in another stratum. You could 
have noticed that some sample plots included the 
boundary between Landuse 3 and Landuse 2 in 
Figure 1.7. In Figure 1.8, the entire sample plot 
occurs within one type of landuse.

Stratified sampling can increase the precision 
of estimated quantities if the strata coincide with 
some major sources of variation in your area. 
By using stratified sampling, you will be more 
certain to have sampled across the variation in 
your survey area. For example, if you expect that 
species richness differs with soil type, then you 
better stratify by soil type.

Stratified sampling is especially useful when 
your research hypothesis can be described in 
terms of differences that occur between strata. For 
example, when your hypothesis is that landuse 
influences species richness, then you should stratify 
by landuse. This is the best method of obtaining 
observations for each category of landuse that will 
allow you to test the hypothesis.

Stratified sampling is not only useful for testing 
hypotheses with categorical explanatory variables, 
but also with continuous explanatory variables. 
Imagine that you wanted to investigate the 
influence of rainfall on species richness. If you 
took a simple random sample, then you would 
probably obtain many observations with near 
average rainfall and few towards the extremes of 
the rainfall range. A stratified approach could 
guarantee that you take plenty of observations at 
high and low rainfalls, making it easier to detect 
the influence of rainfall on species richness.

The main disadvantage of stratified sampling is 
that you need information about the distribution 
of the strata in your survey area. When this 
information is not available, then you may need 
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to do a survey first on the distribution of the 
strata. An alternative approach is to conduct 
systematic surveys, and then do some gap-filling 
afterwards (see below: dealing with covariates and 
confounding).

A modification of stratified sampling is to use 
gradient-oriented transects or gradsects (Gillison 
and Brewer 1985; Wessels et al. 1998). These 
are transects (sample plots arranged on a line) 
that are positioned in a way that steep gradients 
are sampled. In the example of Figure 1.8, you 
could place gradsects in directions that ensure 
that the three landuse categories are included. 
The advantage of gradsects is that travelling time 
(cost) can be minimized, but the results may not 
represent the whole study area well. 

Sample size or the number of 
sample units
Choosing the sample size, the number of sampling 
units to select and measure, is a key part of planning 
a survey. If you do not pay attention to this then 
you run two risks. You may collect far more data 
than needed to meet your objectives, wasting time 
and money. Alternatively, and far more common, 
you may not have enough information to meet 
your objectives, and your research is inconclusive. 
Rarely is it possible to determine the exact sample 
size required, but some attempt at rational choice 
should be made.

We can see that the sample size required must 
depend on a number of things. It will depend on 
the complexity of the objectives – it must take more 
data to unravel the complex relationships between 
several response and explanatory variables than it 
takes to simply compare the mean of two groups. It 
will depend on the variability of the response being 
studied – if every sample unit was the same we only 
need to measure one to have all the information! 
It will also depend on how precisely you need to 
know answers – getting a good estimate of a small 
difference between two strata will require more data 
than finding out if they are roughly the same.

If the study is going to compare different strata 
or conditions then clearly we need observations 
in each stratum, or representing each set of 
conditions. We then need to plan for repeated 
observations within a stratum or set of conditions 
for four main reasons:
1. In any analysis we need to give some indication 

of the precision of results and this will depend on 
variances. Hence we need enough observations 
to estimate relevant variances well.

2. In any analysis, a result estimated from more data 
will be more precise than one estimated from 
less data. We can increase precision of results by 
increasing the number of relevant observations. 
Hence we need enough observations to get 
sufficient precision.

3. We need some ‘insurance’ observations, so that 
the study still produces results when unexpected 
things happen, for example some sample units 
can not be measured or we realize we will have 
to account for some additional explanatory 
variables.

4. We need sufficient observations to properly 
represent the study area, so that results we hope 
to apply to the whole area really do have support 
from all the conditions found in the area.

Of these four, 1 and 2 can be quantified in 
some simple situations. It is worth doing this 
quantification, even roughly, to make sure that 
your sample size is at least of the right order of 
magnitude.

The first, 1, is straightforward. If you can 
identify the variances you need to know about, 
then make sure you have enough observations to 
estimate each. How well you estimate a variance 
is determined by its degrees of freedom (df), and 
a minimum of 10 df is a good working rule. Get 
help finding the degrees of freedom for your 
sample design and planned analysis.

The second is also straightforward in simple 
cases. Often an analysis reduces to comparing 
means between groups or strata. If it does, then the 
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Two-sample t test power calculation 

              n = 16.71477
          delta = 1
             sd = 1
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

 NOTE: n is number in *each* group

mathematical relationship between the number 
of observations, the variance of the population 
sampled and the precision of the mean can be 
exploited. Two approaches are used. You can either 
specify how well you want a difference in means to 
be estimated (for example by specifying the width 
of its confidence interval), or you can think of the 
hypothesis test of no difference. The former tends 
to be more useful in applied research, when we are 
more interested in the size of the difference than 
simply whether one exists or not. The necessary 
formulae are encoded in some software products. 

An example from R is shown immediately 
below, providing the number of sample units (n) 
that will provide evidence for a difference between 
two strata for given significance and power of the 
t-test that will be used to test for differences, and 
given standard deviation and difference between 
the means. The formulae calculated a fractional 
number of 16.71 sample units, whereas it is not 
possible in practice to take 16.71 sample units per 
group. The calculated fractional number could 
be rounded up to 17 or 20 sample units. We 
recommend interpreting the calculated sample size 
in relative terms, and concluding that 20 samples 
will probably be enough whereas 100 samples 
would be too many. 

Sample size in each stratum
A common question is whether the survey should 
have the same number of observations in each 
stratum. The correct answer is once again that it 
all depends. A survey with the same number of 
observations per stratum will be optimal if the 
objective is to compare the different strata and 
if you do not have additional information or 
hypotheses on other sources of variation. In many 
other cases, it will not be necessary or practical to 
ensure that each stratum has the same number of 
observations.

An alternative that is sometimes useful is to 
make the number of observations per stratum 
proportional to the size of the stratum, in our 
case its area. For example, if the survey area is 
stratified by landuse and one category of landuse 
occupies 60% of the total area, then it gets 60% of 
sample plots. For the examples of sampling given 
in the figures, landuse 1 occupies 3.6% of the 
total area (25/687.5), landuse 2 occupies 63.6% 
(437.5/687.5) and landuse 3 occupies 32.7% 
(225/687.5). A possible proportional sampling 
scheme would therefore be to sample 4 plots in 
Landuse 1, 64 plots in Landuse 2 and 33 plots in 
Landuse 3.

One advantage of taking sample sizes 
proportional to stratum sizes is that the average 
for the entire survey area will be the average of 
all the sample plots. The sampling is described as 
self-weighting. If you took equal sample size in 
each stratum and needed to estimate an average 
for the whole area, you would need to weight each 
observation by the area of each stratum to arrive at 
the average of the entire area. The calculations are 
not very complicated, however.
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rainfall are said to be confounded.
The solution in such cases is to attempt to 

break the strong correlation. In the example 
where landuse is correlated with rainfall, then 
you could attempt to include some sample plots 
that have another combination of landuse and 
rainfall. For example, if most forests have high 
rainfall and grasslands have low rainfall, you may 
be able to find some low rainfall forests and high 
rainfall grasslands to include in the sample. An 
appropriate sampling scheme would then be to 
stratify by combinations of both rainfall and 
landuse (e.g. forest with high, medium or low 
rainfall or grassland with high, medium or low 
rainfall) and take a sample from each stratum. If 
there simply are no high rainfall grasslands or low 
rainfall forests then accept that it is not possible 
to understand the separate effects of rainfall and 
landuse, and modify the objectives accordingly.

An extreme method of breaking confounding 
is to match sample plots. Figure 1.9 gives an 
example.

The assumption of matching is that 
confounding variables will have very similar 
values for paired sample plots. The effects from 
the confounding variables will thus be filtered 
from the analysis.

The disadvantage of matching is that you will 
primarily sample along the edges of categories. 
You will not obtain a clear picture of the overall 
biodiversity of a landscape. Remember, however, 
that matching is an approach that specifically 
investigates a certain hypothesis.

You could add some observations in the middle 
of each stratum to check whether sample plots at 
the edges are very different from sample plots at 
the edge. Again, it will depend on your hypothesis 
whether you are interested in finding this out.

Some researchers have suggested that taking 
larger sample sizes in larger strata usually results 
in capturing more biodiversity. This need not 
be the case, for example if one landuse which 
happens to occupy a small area contains much of 
the diversity. However, most interesting research 
objectives require more than simply finding the 
diversity. If the objective is to find as many species 
as possible, some different sampling schemes 
could be more effective. It may be better to use 
an adaptive method where the position of new 
samples is guided by the results from previous 
samples.

Simple random sampling will, in the long run, 
give samples sizes in each stratum proportional to 
the stratum areas. However this may not happen 
in any particular selected sample. Furthermore, 
the strata are often of interest in their own right, 
and more equal sample sizes per stratum may be 
more appropriate, as explained earlier. For these 
reasons it is almost always worth choosing strata 
and their sample sizes, rather than relying on 
simple random sampling.

Dealing with covariates and 
confounding
We indicated at the beginning of this chapter that 
it is difficult to make conclusions about cause-
effect relationships in surveys. The reason that 
this is difficult is that there may be confounding 
variables. For example, categories of landuse could 
be correlated with a gradient in rainfall. If you 
find differences in species richness in different 
landuses it is then difficult or impossible to 
determine whether species richness is influenced 
by rainfall or by landuse, or both. Landuse and 
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Figure 1.9  Matching of sample plots breaks confounding of other variables.

Pilot testing of the sampling 
protocol
The best method of choosing the size and shape of 
your sample unit is to start with a pilot phase in 
your project. During the pilot phase all aspects of 
the data collection are tested and some preliminary 
data are obtained.

You can evaluate your sampling protocol after 
the pilot phase. You can see how much variation 
there is, and base some modifications on this 
variation. You could calculate the required sample 
sizes again. You could also opt to modify the shape, 
size or selection of sample plots.

You will also get an idea of the time data collection 
takes per sample unit. Most importantly, you 
could make a better estimation of whether you 
will be able to test your hypothesis, or not, by 
already conducting the analysis with the data that 
you already have.

Pilot testing is also important for finding out 
all the non-statistical aspects of survey design and 
management. These aspects typically also have an 
important effect on the overall quality of the data 
that you collect.
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Examples of the analysis with the command options of Biodiversity.R 
See in chapter 3 how Biodiversity.R can be loaded onto your computer.

To load polygons with the research areas:
area <- array(c(10,10,15,35,40,35,5,35,35,30,30,10), 
dim=c(6,2))

landuse1 <- array(c(10,10,15,15,30,35,35,30), dim=c(4,2))

landuse2 <- array(c(10,10,15,15,35,30,10,30,30,35,30,15), 
dim=c(6,2))

landuse3 <- array(c(10,10,30,35,40,35,5,10,15,30,30,10), 
dim=c(6,2))

window <- array(c(15,15,30,30,10,25,25,10),dim=c(4,2))

To plot the research area:
plot(area[,1], area[,2], type=”n”, xlab=”horizontal position”, 
ylab=”vertical position”, lwd=2, bty=”l”)

polygon(landuse1)

polygon(landuse2)

polygon(landuse3)

To randomly select sample plots in a window:
spatialsample(window, method=”random”, n=20, xwidth=1, 
ywidth=1, plotit=T, plothull=T)

To randomly select sample plots in the survey area:
spatialsample(area, method=”random”, n=20, xwidth=1, ywidth=1, 
plotit=T, plothull=F)

To select sample plots on a grid:
spatialsample(area, method=”grid”, xwidth=1, ywidth=1, 
plotit=T, xleft=10.5, ylower=5.5, xdist=1, ydist=1)

spatialsample(area, method=”grid”, xwidth=1, ywidth=1, 
plotit=T, xleft=12, ylower=7, xdist=4, ydist=4)
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To randomly select sample plots from a grid:
spatialsample(area, method=”random grid”, n=20, xwidth=1, 
ywidth=1, plotit=T, xleft=10.5, ylower=5.5, xdist=1, ydist=1)

spatialsample(area, method=”random grid”, n=20, xwidth=1, 
ywidth=1, plotit=T, xleft=12, ylower=7, xdist=4, ydist=4)

To select sample plots from a grid with random start:
spatialsample(area, method=”random grid”, n=20, xwidth=1, 
ywidth=1, plotit=T, xdist=4, ydist=4)

To randomly select maximum 10 sample plots from each type of landuse:
spatialsample(landuse1, n=10, method=”random”, plotit=T)

spatialsample(landuse2, n=10, method=”random”, plotit=T)

spatialsample(landuse3, n=10, method=”random”, plotit=T)

To randomly select sample plots from a grid within each type of landuse. Within each landuse, the grid 
has a random starting position:

spatialsample(landuse1, n=10, method=”random grid”, xdist=2, 
ydist=2, plotit=T)

spatialsample(landuse2, n=10, method=”random grid”, xdist=4, 
ydist=4, plotit=T)

spatialsample(landuse3, n=10, method=”random grid”, xdist=4, 
ydist=4, plotit=T)

To calculate sample size requirements:
power.t.test(n=NULL, delta=1, sd=1, sig.level=0.05, power=0.8, 
type=”two.sample”)

power.t.test(n=NULL, delta=0.5, sd=1, sig.level=0.05, 
power=0.8, type=”two.sample”)

power.anova.test(n=NULL, groups=4, between.var=1, within.var=1, 
power=0.8)

power.anova.test(n=NULL, groups=4, between.var=2, within.var=1, 
power=0.8)

To calculate the area of a polygon:
areapl(landuse1)
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Data preparation

Preparing data before analysis
Before ecological data can be analysed, they need 
to be prepared and put into the right format. Data 
that are entered in the wrong format cannot be 
analysed or will yield wrong results.

Different statistical programs require data in 
different formats. You should consult the manual 
of the statistical software to find out how data need 
to be prepared.  Alternatively, you could check 
example datasets. An example of data preparation 
for the R package is presented at the end of this 
session.

Before you embark on the data analysis, it is 
essential to check for mistakes in data entry. If you 
detect mistakes later in the analysis, you would 
need to start the analysis again and could have 
lost considerable time. Mistakes in data entry can 
often be detected as exceptional values. The best 
procedure of analysing your results is therefore to 
start with checking the data.

An example of species survey data
Imagine that you are interested in investigating 
the hypothesis that soil depth influences tree 
species diversity. The data that will allow you to 
test this hypothesis are data on soil depth and 
data on diversity collected for a series of sample 
plots. We will see in a later chapter that diversity 
can be estimated from information on the species 
identity of every tree. Figure 2.1 shows species 
and soil depth data for the first four sample plots 
that were inventoried (to test the hypothesis, we 
need several sample plots that span the range from 
shallow to deep soils). For site A, three species 
were recorded (S1, S2 and S3) and a soil depth 
of 1 m. For site B, only two species were recorded 
(S1 with four trees and S3 with one tree) and a soil 
depth of 2 m. 

Figure 2.1  A simplified example of information 
recorded on species and environmental data.
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Site Species S1 
(count)

Species S2 
(count)

Species S3 
(count)

A 1 1 1
B 4 0 1
C 2 2 0
D 0 1 2

This chapter deals with the preparation of data 
matrices as the two matrices given above. Note 
that the example of Figure 2.1 is simplified: 
typical species matrices have more than 100 rows 
and more than 100 columns. These matrices can 
be used as input for the analyses shown in the 
following chapters. They can be generated by a 
decent data management system. These matrices 
are usually not the ideal method of capturing, 
entering and storing data. Recording species data 
in the field is typically done with data collection 
forms that are filled for each site separately and 
that contain tables with a single column for 
the species name and a single column for the 
abundance. This is also the ideal method of 
storing species data.

The species information from Figure 2.1 can be 
recorded as follows:

A general format for species 
survey data
As seen above, all information can be recorded 
in the form of data matrices. All the types of 
data that are described in this manual can be 
prepared as two matrices: the species matrix and 
the environmental matrix. Table 2.1 shows a part 
of the species matrix for a well-studied dataset in 
community ecology, the dune meadow dataset. 
This dataset contains 30 species of which only 
13 are presented. The data were collected on 
the vegetation of meadows on the Dutch island 
of Terschelling (Jongman et al. 1995). Table 2.2 
shows the environmental data for this dataset.

You can notice that the rows of both matrices 
have the same names – they reflect the data 
that were collected for each site or sample unit. 
Sites could be sample plots, sample sites, farms, 
biogeographical provinces, or other identities. 
Sites are defined as the areas from which data were 
collected during a specific time period. We will 
use the term “site” further on in this manual. Sites 
will always refer to the rows of the datasets. 

Some studies involve more than one type of 
sampling unit, often arranged hierarchically. For 
example, villages, farms in the village and plots 
within a farm. Sites of different types (such as plots, 
villages and districts) should not be mixed within 
the same data matrix. Each site of the matrix should 
be of the same type of sampling unit.

The columns of the matrices indicate the 
variables that were measured for each site. The cells 
of the matrices contain observations – bits of data 
recorded for a specific site and a specific variable.

We prefer using rows to represent samples and 
columns to represent variables to the alternative 
form where rows represent variables. Our preference 
is simply based on the fact that some general 
statistical packages use this format. Data can be 
presented by swapping rows and columns, since the 
contents of the data will remain the same.

Site Soil depth (m)

A 1.0
B 2.0
C 0.5
D 1.5

The environmental information from Figure 2.1 
can be recorded in a similar fashion:
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Table 2.2   An example of an environmental matrix, where rows correspond to sites and columns correspond to 
variables 
Site A1 Moisture Management Use Manure
X1 2.8 1 SF Haypastu 4
X2 3.5 1 BF Haypastu 2
X3 4.3 2 SF Haypastu 4
X4 4.2 2 SF Haypastu 4
X5 6.3 1 HF Hayfield 2
X6 4.3 1 HF Haypastu 2
X7 2.8 1 HF Pasture 3
X8 4.2 5 HF Pasture 3
X9 3.7 4 HF Hayfield 1
X10 3.3 2 BF Hayfield 1
X11 3.5 1 BF Pasture 1
X12 5.8 4 SF Haypastu 2
X13 6 5 SF Haypastu 3
X14 9.3 5 NM Pasture 0
X15 11.5 5 NM Haypastu 0
X16 5.7 5 SF Pasture 3
X17 4 2 NM Hayfield 0
X18 4.6 1 NM Hayfield 0
X19 3.7 5 NM Hayfield 0
X20 3.5 5 NM Hayfield 0

The species matrix 

The species data are included in the species 
matrix. This matrix shows the values for each 
species and for each site (see data collection for 
various types of samples). For example, the value 
of 5 was recorded for species Agrostis stolonifera 
(coded as Agrsto) and for site 13. Another name 
for this matrix is the community matrix.

The species matrix often contains abundance 
values – the number of individuals that were 
counted for each species. Sometimes species data 
reflect the biomass recorded for each species. 
Biomass can be approximated by percentage 
cover (typical for surveys of grasslands) or by 
cross-sectional area (the surface area of the stem, 
typical for forest surveys). Some survey methods 
do not collect precise values but collect values that 
indicate a range of possible values, so that data 
collection can proceed faster. For instance, the 
value of 5 recorded for species Agrostis stolonifera 

and for site 13 indicates a range of 5-12.5% in 
cover percentage. The species matrix should not 
contain a range of values in a single cell, but a 
single number (the database can contain the range 
that is used to calculate the coding for the range). 
An extreme method of collecting data that only 
reflect a range of values is the presence-absence 
scale, where a value of 0 indicates that the species 
was not observed and a value of 1 shows that the 
species was observed.  

A site will often only contain a small subset of 
all the species that were observed in the whole 
survey. Species distribution is often patchy. Species 
data will thus typically contain many zeros. Some 
statistical packages require that you are explicit 
that a value of zero was collected – otherwise the 
software could interpret an empty cell in a species 
matrix as a missing value. Such a missing value 
will not be used for the analysis, so you could 
obtain erroneous results if the data were recorded 
as zero but treated as missing. 
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The environmental matrix
The environmental dataset is more typical of the 
type of dataset that a statistical package normally 
handles. The columns in the environmental dataset 
contain the various environmental variables. The 
rows indicate the sites for which the values were 
recorded. The environmental variables can be 
referred to as explanatory variables for the types 
of analysis that we describe in this manual. Some 
people prefer to call these variables independent 
variables, and others prefer the term x variables. 
For instance, the information on the thickness 
of the A1 horizon of the dune meadow dataset 
shown in Table 2.2 can be used as an explanatory 
variable in a model that explains where species 
Agrostis stolonifera occurs. The research hypotheses 
will have indicated which explanatory variables 
were recorded, since an infinite number of 
environmental variables could be recorded at each 
site.

The environmental dataset will often contain 
two types of variables: quantitative variables and 
categorical variables.

Quantitative variables such as the thickness of 
the A1 horizon of Table 2.2 contain observations 
that are measured quantities. The observation for 
the A1 horizon of site 1 was for example recorded 
by the number 2.8. Various statistics can be 
calculated for quantitative variables that cannot be 
calculated for categorical variables. These include:
• The mean or average value
• The standard deviation (this value indicates how 

close the values are to the mean)
• The median value (the middle value when values 

are sorted from low to high) (synomyms for this 
value are the 50% quantile or 2nd quartile)

• The 25% and 75% quantiles = 1st and 3rd 

quartiles (the values for which 25% or 75% of 
values are smaller when values are sorted from 
low to high) 

• The minimum value
• The maximum value

For the thickness of A1 horizon of Table 2.2, we 
obtain following summary statistics.
   
 Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
2.800   3.500   4.200   4.850   5.725  11.500

These statistics summarize the values that were 
obtained for the quantitative variable. Another 
method by which the values for a quantitative 
variable can be summarized is a boxplot graph 
as shown in Figure 2.2. The whiskers show the 
minimum and maximum of the dataset, except if 
some values are farther than 1.5 × the interquartile 
range (the difference between the 1st and 3rd 
quartile) from the median value. Note that various 
software packages or options within such package 
will result in different statistics to be portrayed 
in boxplot graphs – you may want to check 
the documentation of your particular software 
package. An important feature of Figure 2.2 is 
that it shows that there are some outliers in the 
dataset. If your data are normally distributed, 
then you would only rarely (less than 1% of the 
time) expect to observe an outlier. If the boxplot 
indicates outliers, check whether you entered the 
data correctly (see next page).
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Figure 2.2  Summary of a quantitative variable as a boxplot. The variable that is summarized is the thickness of the 
A1 horizon of Table 2.2.

Figure 2.3  Summary of a quantitative variable as a Q-Q plot. The variable that is summarized is the thickness of the 
A1 horizon of Table 2.2. The two outliers (upper right-hand side) correspond to the outliers of Figure 2.2.
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There are other graphical methods for checking 
for outliers for quantitative variables. One of 
these methods is the Q-Q plot. When data are 
normally distributed, all observations should be 
plotted roughly along a straight line. Outliers will 
be plotted further away from the line. Figure 2.3 
gives an example. Another method to check for 
outliers is to plot a histogram. The key point is to 
check for the exceptional observations.

Categorical variables (or qualitative variables) 
are variables that contain information on data 
categories. The observations for the type of 
management for the dune meadow dataset 
(presented in Table 2.2) have four values: “standard 
farming”, “biological farming”, “hobby farming” 
and “nature conservation management”. The 
observation for the type of management is thus 
not a number. In statistical textbooks, categorical 
variables are also referred to as factors. Factors can 
only contain a limited number of factor levels.

The only way by which categorical variables 
can be summarized is by listing the number 
of observations or frequency of each category. 
For instance, the summary for the management 
variable of Table 2.2 could be presented as:

 Category

  BF HF NM SF 

 3  5  6  6

Figure 2.4  Summary of a categorical variable by a bar 
plot. The management of Table 2.2 is summarized.

Graphically, the summary can be represented as 
a barplot. Figure 2.4 shows an example for the 
management of Table 2.2.

Some researchers record observations of 
categorical variables as a number, where the 
number represents the code for a specific type 
of value – for instance code “1” could indicate 
“standard farming”. We do not encourage the 
usage of numbers to code for factor levels since 
statistical software and analysts can confuse the 
variable with a quantitative variable. The statistical 
software could report erroneously that the average 
management type is 2.55, which does not make 
sense. It would definitely be wrong to conclude 
that the average management type would be 3 (the 
integer value closest to 2.55) and thus be hobby-
farming. A better way of recording categorical 
variables is to include characters. You are then 
specific that the value is a factor level – you could 
for instance use the format of “c1”, “c2”, “c3” and 
“c4” to code for the four management regimes. 
Even better techniques are to use meaningful 
abbreviations for the factor levels – or to just use 
the entire description of the factor level, since 
most software will not have any problems with 
long descriptions and you will avoid confusion of 
collaborators or even yourself at later stages.   

Ordinal variables are somewhere between 
quantitative and categorical variables. The manure 
variable of the dune meadow dataset is an ordinal 
variable.  Ordinal variables are not measured on 
a quantitative scale but the order of the values 
is informative. This means for manure that 
progressively more manure is used from manure 
class 0 until 4. However, since the scale is not 
quantitative, a value of 4 does not mean that four 
times more manure is used than for value 1 (if it 
was, then we would have a quantitative variable). 
For the same reason manure class 3 is not the 
average of manure class 2 and 4.

You can actually choose whether you treat 
ordinal variables as quantitative or categorical observations 
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variables in the statistical analysis. In many 
statistical packages, when the observations of 
a variable only contain numbers, the package 
will assume that the variable is a quantitative 
variable. If you want the variable to be treated 
as a categorical variable, you will need to inform 
the statistical package about this (for example by 
using a non-numerical coding system). If you are 
comfortable to assume for the analysis that the 
ordinal variables were measured on a quantitative 
scale, then it is better to treat them as quantitative 
variables. Some special methods for ordinal data 
are also available.

Checking for exceptional 
observations that could be 
mistakes
The methods of summarizing quantitative 
and categorical data that were described in 
the previous section can be used to check for 
exceptional data. Maximum or minimum values 
that do not correspond to the expectations will 
easily be spotted. Figure 2.5 for instance shows 
a boxplot for the A1 horizon that contained a 
data entry error for site 3 as the value 43 was 

entered instead of 4.3. Compare with Figure 2.2. 
You should be aware of the likely ranges of all 
quantitative variables. 

Some mistakes for categorical data can easily 
be spotted by calculating the frequencies of 
observations for each factor level. If you had entered 
“NN” instead of “NM” for one management 
observation in the dune meadow dataset, then 
a table with the number of observations for 
each management type would easily reveal that 
mistake. This method is especially useful when 
the number of observations is fixed for each 
level. If you designed your survey so that each 
type of management should have 5 observations, 
then spotting one type of management with 4 
observations and one type with 1 observation 
would reveal a data entry error.

Some exceptional observations will only be 
spotted when you plot variables against each 
other as part of exploratory analysis, or even later 
when you started conducting some statistical 
analysis. Figure 2.6 shows a plot of all possible 
pairs of the environmental variables of the dune 
meadow dataset. You can notice the two outliers 
for the thickness of the A1 horizon, which occur 
at moisture category 4 and manure category 1, 
for instance.

Figure 2.5  Checking for exceptional observations.
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After having spotted a potential mistake, you need 
to record immediately where the potential mistake 
occurred, especially if you do not have time to 
directly check the raw data. You can include a text 
file where you record potential mistakes in the 
folder where you keep your data. Alternatively, 
you could give the cell in the spreadsheet where 
you keep a copy of the data a bright colour. Yet 
another method is to add an extra variable in your 
dataset where comments on potential mistakes are 
listed. However the best method is to directly check 
and change your raw data (if a mistake is found). 
Always record the changes that you have made and 
the reasons for them. Note that an observation that 
looks odd but which can not be traced to a mistake 

should not be changed or assumed to be missing. 
If it is clearly a nonsense value, but no explanation 
can be found, then it should be omitted. If it is 
just a strange value then various courses are open 
to you. You can try analysing the data with and 
without the observation to check if it makes a big 
difference to results. You might have to go back to 
the field and take the measurement again, finding a 
field explanation if the odd value is repeated.

Do not get confused when you have various 
datasets in various stages of correction. Commonly 
scientists end up with several versions of each data 
file and loose track of which is which. The best 
method is to have only one dataset, of which you 
make regular backups.

Figure 2.6  Checking for exceptional data by pairwise comparisons of the variables of Table 2.2.
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Methods of transforming the 
values in the matrices

There are many ways in which the values of 
the species and environmental matrices can be 
transformed. Some methods were developed 
to make data more conform to the normal 
distribution. What transformation you use will 
depend on your objectives and what you want 
to assume about the data. For several types of 
analysis described in later chapters you do not 
need to transform the species matrix, and most 
analyses do not actually require the explanatory 
variables to be normally distributed. It is 
therefore not good practice to always transform 
explanatory variables to be normally distributed. 
Moreover, in many cases it will not be possible to 
find a transformation that will result in normally 
distributed data.

We recommend only transforming variables if 
you have a good reason to investigate a particular 
pattern that will be revealed by the transformation. 
For example, an extreme way of transforming the 
species matrix is to change the values to 1 if the 
species is present and 0 if the species is absent. The 
subsequent analysis will thus not be influenced by 
differences in species’ abundances. By comparing 
the results of the analysis of the original data with 
the results from the transformed data, you can get 
an idea of the influence of differences in abundance 
on the results. If one species dominates and the 
ordination results are only influenced by that one 
species, then you could use a logarithmic or square-
root transformation to diminish the influence of 
the dominant species – again this means that there 
is a good reason for the transformation and such 
should not be a standard approach. The fact that 
the results are influenced by the dominant species 
is actually a clear demonstration of an important 
pattern in your dataset.
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Examples of the analysis with the menu options of Biodiversity.R
See in chapter 3 how data can be loaded from an external file:

Data > Import data > from text file…

Enter name for dataset: data (choose any name)

Click “OK”

Browse for the file and click on it

To save data to an external file:
Data > Active Dataset > export active dataset…

File name: export.txt (choose any name)

Select the species and environmental matrices:
Biodiversity > Environmental Matrix > Select environmental matrix

Select the dune.env dataset

Biodiversity > Community matrix > Select community matrix

Select the dune dataset

To summarize the data and check for exceptional cases:
Biodiversity > Environmental Matrix > Summary…

Select variable: A1

Click “OK”

Click “Plot”
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Examples of the analysis with the command options of Biodiversity.R 
To load data from an external file:

data <- read.table(file=”D://my files/data.txt”)
data <- read.table(file.choose())

To save data to an external file:
write.table(data, file=”D://my files/data.txt”)
write.table(data, file.choose())

To summarize the data and check for exceptional cases:
summary(dune.env)
boxplot(dune.env$A1)
points(mean(dune.env$A1),cex=1.5)
table(dune.env$Management)
plot(dune.env$Management)
pairs(dune.env)

To transform the data:
dune.ln.transformed <- log(dune+1)
dune.squareroot.transformed <- dune^0.5
dune.speciesprofile <- decostand(dune,”total”)
dune.env$A1.standard <- scale(dune.env$A1)

Checking whether data is normally distributed:
qq.plot(dune.env$A1)
shapiro.test(dune.env$A1)
ks.test(dune.env$A1,pnorm)
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Doing biodiversity analysis  
with Biodiversity.R

Doing biodiversity analysis with 
Biodiversity.R
This chapter describes how the analyses presented 
in this manual can be performed with the 
Biodiversity.R software. 

This special attention to Biodiversity.R does not 
mean that other software packages can not be used 
for biodiversity analysis. In 2003, a Biodiversity 
Analysis Package CD-ROM was produced to 
provide several software packages that are very 
good for biodiversity analysis. However, some of 
the software packages had a more limited scope 
in the analyses that they supported. Some of the 
software packages had not developed a graphical 
user interface, which caused some problems for 
teaching the analysis. Some types of analysis could 
not be performed in the software provided on the 
CD-ROM. For these reasons, the Biodiversity.R 
software was developed, including a graphical user 
interface. All the analyses described in this manual 
can be conducted with Biodiversity.R.

What is Biodiversity.R?
Biodiversity.R is software that does all the 
biodiversity analyses described in this manual. It 
needs to be loaded into the R statistical software. 
R is a software that was developed to allow for 
many different types of statistical analysis. It is very 
similar to the S and S-Plus statistical software. It is 
free software, as is Biodiversity.R. The software is 
also open, so that you can check how calculations 
are done, and the graphics are quite advanced. 

How do I run Biodiversity.R?
The CD-ROM that is provided with this manual 
contains an installed version of Biodiversity.R. 
You can run Biodiversity.R from the CD-ROM 
by clicking on the file Run-Biodiversity.bat in 
the Biodiversity.R folder on the CD-ROM. 
Alternatively you need to install Biodiversity.R on 
another location on your computer first.

Each time that you run R, you need to load 
the Rcmdr package (see below: how do I run 
Biodiversity.R) to access the Biodiversity.R 
graphical user interface.

How do I install Biodiversity.R?
Two options are provided for installing 
Biodiversity.R. When you click on Install-
Biodiversity.bat, then all files will be installed under 
the Program Files folder of your C drive. 

The alternative method is to install Biodiversity.R 
in steps. The files that are used during installation 
are all listed on the CD-ROM in the Biodiversity.
R/installation files folder (Figure 3.1, see next 
page).

The first thing that you need to do is to install 
the R software. You can also obtain the software 
from the following website: http://cran.r-project.
org. If you are using Windows, then you can 
download R from: http://cran.r-project.org/bin/
windows/base. You will find a file there with a 
name similar to rw2010-1.exe. You need to run 
the file to install R. Note that it may be safer to 
close all other programs when you install R.
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During the installation, make sure that you opt 
to install the support files for library(tcltk).

After you have installed R, then you can run it. 
R is a language that is run by typing in commands. 
It does not have an extensive user interface.

Some additional software can be loaded onto 
R. These addins are called packages or libraries. 
Some packages already come with the installation 
version of R. Some other packages need to be 
downloaded. 

You have various options to install these 
additional packages. The first option is install the 
additional packages from the CD-ROM. Within 

the R program, you need to go to the top menu, 
choose Packages, and then choose menu option: 
Install packages from local zip files…. Figure 3.2 
shows how this can be done. 

Note that we will not put many images of menus 
in this manual, so that some space will be saved. 
We will describe the selection shown in Figure 
3.2 as: “You select the R menu option: Packages > 
Install package(s) from local zip files…”. 

You will obtain a list of available packages under 
the Installation files folder of the CD-ROM. You 
can install all the packages by selecting all of 
them at the same time (click on the CTRL and A 
keys simultaneously). 

 

 
Figure 3.1.  All the files used during installation are provided in the Installation files folder
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Figure 3.2.  Installing other packages onto R. This menu option is described in the text as: “Packages > Install 
package(s) from local zip files…”.

The alternatives are to download the packages 
from R and then install them manually afterwards, 
or to install the packages directly from the CRAN 
website. You can download the files for the different 
packages from the same website you downloaded 
the R package itself from: http://cran.r-project.
org. You will see a link to “contributed packages”. 
If you are using Windows, then you can download 
the packages from: http://cran.r-project.org/bin/
windows/contrib.

You only need to install a package once after 
installing R. When you run R, you will not be able 
to access the functions of contributing packages, 
unless you follow the menu option of: Packages 
> Load package…, or if you give the appropriate 
command in R of loading the package. For the 
vegan library, you need to select this package 
after menu option: Packages > Load package… or 
you need to type library(vegan) each time 
that you started using R and wanted to access the 
functions of this library. 

Note that we will use a different font for 
results and commands in R and Biodiversity.
R. For example, library(vegan)points to a 
command in R. Any information in this font will 
appear in the R console.

The packages that you need to install into R are:
• abind
• akima
• car
• combinat
• effects
• ellipse
• lmtest
• maptree
• multcomp
• mvtnorm
• rcmdr
• relimp
• rgl
• sandwich
• splancs
• strucchange
• vegan
• zoo

These are quite a few packages, but this also 
means that various types of analysis can be done 
in R. Especially important is vegan as it allows 
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for many of the analyses of Biodiversity.R. Rcmdr 
is also an important package as it allows for the R-
commander graphical interface. (For the advanced 
user: The R-commander runs best under Single-
Document Interface. You can set this option by 
setting “MDI = no” in file C:\Program Files\R\
rw2010\etc\Rconsole.)

The final (and probably most complicated) step 
in installing Biodiversity.R is to copy two files 
into the library\Rcmdr\etc folder of R. In case that 
you installed R under the program files of your 
C drive, then you can find the Rcmdr directory 
under C:\Program files\R\rw2010\library\Rcmdr\
etc. You need to put the following files into this 
directory: Biodiversity.R and Rcmdr-menus.txt. The 
Rcmdr-menus.txt will already exist in the library, so 
you need to replace the Rcmdr-menus.txt with the 
file that is provided on the CD-ROM. You could 
use a program such as the Windows Explorer to 
copy the files.

When you will have completed all these steps, 
Biodiversity.R will have been installed.

In short, you need to follow these steps to install 
and run Biodiversity.R:
1. Install R

2. Install the required contributing packages

3. Copy Biodiversity.R and Rcmdr-menus.txt into 
library\Rcmdr\etc

How do I run Biodiversity.R?
Obviously you need to run R first.

To run Biodiversity.R with the menu options, 
you will need to load the R-commander, either by 
the command library(Rcmdr) or by menu 
option: Packages > Load package…

Each time that you want to use Biodiversity.R, 
you need to load the Rcmdr package again after 
launching R.

The species and environmental 
datasets
After you have loaded Biodiversity.R, you will not 
be able to conduct any type of analysis before you 
have chosen the species and environmental datasets. 
As we saw in chapter 2 on data preparation, the 
analyses in this manual will be conducted with 
these two datasets. 

The R-commander was designed to only use one 
dataset. This dataset is called the active dataset. 
Biodiversity.R uses two datasets, the species and 
environmental datasets. When developing it the 
decision was taken to make the environmental 
dataset of Biodiversity.R always to be the active 
dataset of the R-commander. When a new dataset 
is chosen to be the new active dataset for the 
R-commander, then it also becomes the new 
environmental dataset of Biodiversity.R. With 
the menu options of the R-commander, various 
manipulations can be done on the active dataset, 
including importing an active dataset and saving an 
active dataset. You can do the same manipulations 
to the species dataset, but first you need to set the 
species dataset to also be the active dataset (and 
thus also the environmental dataset).

An example of an analysis in 
Biodiversity.R
Descriptions of the way in which each type of 
analysis can be done in R are provided at the end 
of each chapter. As an example and a test whether 
you installed Biodiversity.R correctly, you could 
run following analysis. This example calculates a 
species accumulation curve for the dune dataset. 
This dataset is provided with vegan. The result 
that you will obtain is shown in the chapter on 
species richness.
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You need to follow these menu options:
Biodiversity > Environmental Matrix > Select 
environmental matrix

Select the dune.env dataset

Biodiversity > Community Matrix > Select 
community matrix

Select the dune dataset

Biodiversity > Analysis of biodiversity > Species 
accumulation curves

Accumulation method: exact

Press on the “OK” button

Press on the “Plot” button

The last window that allows you to calculate a 
species accumulation curve is shown in Figure 3.3.

Note that there are separate “OK” and “Plot” 
options for different menus. When you press 
“OK”, then the analysis is calculated and the 
results are saved under name the specified for the 
result. The “Plot” options apply to the name of 
the result that appears on top. It is not necessary to 
redo the analysis to plot results, and you can also 
plot information from earlier analyses by changing 
the name of the result on top.

 

 
Figure 3.3.  The window interface for the calculation of species accumulation curves
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The alternative option to using the menu interface 
is to type in the following commands:

Accum.1 <- accumresult(dune, 
method=’exact’)

Accum.1

plot(Accum.1)

Note that R is case sensitive: Plot(accum.1) 
will not work!

If you chose the first option, then you will see 
that the same commands were generated by the 
R-commander. The R-commander is actually 
an interface that allows you to find appropriate 
commands that can be used in R. If you are very 
familiar with the commands, then you could 
perform some analyses more quickly by directly 
typing them in R.

You can see that R commands consist of functions 
(such as accumresult or specaccum), 
followed by arguments that are put between 
brackets. The command specaccum(dune) 
will calculate a species accumulation for the dune 
dataset, for instance.

Importing files into Biodiversity.R
Files of various formats can be imported into R. 
We usually prefer to use text files (files with an 
extension of .txt), where the columns are separated 
by tabs. You can create such files from Excel by 
choosing the menu option in Excel: File > Save 
as… and then putting “text (tab delimited)”.

Be aware that text fields (also names of variables 
and sites) can only contain one continuous text 
without spaces. If you have words separated 
by  spaces (such as the genus and species of a 
plant name), then you need to change these 
into a continuous text such as changed_into_
continuous_text, changedintocontinuoustext or 
changed.into.continuous.text.

Datasets in R have one particular feature in not 
having a name for the column that contains the 
row names of the data. So if your first column of 
data determines the name of each site, then you 
should not have any contents in the first row 
of data with the column names. As a result, the 
number of fields in the first row of the file will 
be one less than the other rows of the file. You 
can check for this feature by looking at the files  
dune.txt and dune.env.txt, provided under the 
Data folder on the CD-ROM, or look at figures 
3.4 and 3.5. If the first row has the same number 
of columns, then R will conclude that you have 
not chosen to give row names to your data.

 
Achmil Agrsto Airpra Alogen Antodo Belper Brarut Brohor Calcus Chealb

X1 1 0 0 0 0 0 0 0 0 0
X2 3 0 0 2 0 3 0 4 0 0
X3 0 4 0 7 0 2 2 0 0 0
X4 0 8 0 2 0 2 2 3 0 0
X5 2 0 0 0 4 2 2 2 0 0

Figure 3.4.  Part of the dune.txt file with the species data for the dune meadow dataset. Note that the column with 
the names of the sites has no name.
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A1 Moisture Management Use Manure
X1 2.8 1 SF Haypastu 4
X2 3.5 1 BF Haypastu 2
X3 4.3 2 SF Haypastu 4
X4 4.2 2 SF Haypastu 4
X5 6.3 1 HF Hayfield 2

Figure 3.5.  Part of the dune.env.txt file with the environmental data for the dune meadow dataset. Note that the 
column with the names of the sites has no name.

Once you have created the file, then you can 
import it by menu option: Data > Import data 
> From text file… and then browse to the right 
place of your file. You can look at your data by 
clicking on the “View Dataset” button below the 
top menu of the R-commander.

Learning more about the 
commands of R and the 
contributed packages
As we saw above, R is statistical software that is 
driven by functions. You may therefore increase 
the utility of this software by learning more about 
its functions, especially finding out options, 
calculation methods and related functions.

There are various options of learning about the 
functions.

One option is to type in the name of the function 
by R menu option: Help > R functions (text)… 
and then typing in “specaccum”, for example.

The second option is to go to R menu option: 
Help > Html help. It may especially be useful to 
check then under the Packages and the Search 
Engine.

The third option is to type a ? before the function 
in R. For example ?specaccum

The fourth option is to just type the function in 
R, for example specaccum. In that case, you will 
obtain the actual programming code that was used 
for the function.

Note that some new functions were created for 
Biodiversity.R. Documentation for these functions 
is not provided through the R console, but you can 
access these files from the CD-ROM that comes 
with this manual under the Biodiversity.R folder 
(click on Biodiversity.R help.html)

 
Achmil Agrsto Airpra Alogen Antodo Belper Brarut Brohor Calcus Chealb

X1 1 0 0 0 0 0 0 0 0 0
X2 3 0 0 2 0 3 0 4 0 0
X3 0 4 0 7 0 2 2 0 0 0
X4 0 8 0 2 0 2 2 3 0 0
X5 2 0 0 0 4 2 2 2 0 0
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Citing R
When you use R for data analysis, you need to cite 
using the base package and the additional packages 
in the publications where you report the results 
of the data analysis. Information on citation is 
provided by the citation function:

> citation()
To cite R in publications use:
  R Development Core Team (2005). R: A language and environment for 

statistical computing. 
  R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0, 

  URL http://www.R-project.org.

> citation(“vegan”)
To cite package ‘vegan’ in publications use:
  Oksanen, J., Kindt, R. & O’Hara, R.B. (2005). vegan: Community 
Ecology Package 

  version 1.6-9. http://cc.oulu.fi/~jarioksa/.
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CHAPTER 4

Analysis of species richness

Analysis of species richness
Species richness is the number of species that has 
been recorded for a specific group of organisms 
during a specific time period. It also refers to a 
specific area. That may be the study area, it could 
be a plot or sampling unit, or an assemblage of 
sampling units.

Although it is relatively easy to calculate the 
number of species identified in a set of sample 
plots, it is trickier to find estimates that can be 
used to compare the species richness between 
various subsets in a particular dataset.

How can species richness be 
calculated?
It is relatively easy to calculate the number of 
species if the species identity of every individual 
tree is known. It is good practice to document 
how species were identified, and ideally where 
herbarium specimens were deposited. If you do 
not know the identities of each and every species, 
then you could opt to only base your analysis 
on the species with confirmed identities. Some 
researchers include morphospecies in the species 
matrix that they analyse: these are species that can 
be confidently categorized as being different from 
the other species in the species matrix, but can not 
be identified.

Figure 4.1  Species richness depends on the scale at which it is measured in a landscape. In this example, the 
number of species on site A is 3, the average number of species per site is 3.5 and the total number of species in the 
survey area (equaling 4 sites since this is a simplified example) is 7.
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Always mention where (and possibly when) you 
counted the species. Figure 4.1 shows that you 
can count 3 or 4 species within a single site and 
7 species in the total survey. You should always 
mention the sample size for which you counted 
the species. 

Calculating the total number of 
species or total species richness

The total number of species can be calculated 
relatively easy. The total number of species for the 
dune dataset is 30. If you prepared your species 
matrix correctly, then the total species richness is 
the same as the number of columns of your species 
matrix. In Figure 4.1, the total number of species 
is 7.

Calculating the total number of 
species for various subsets in the 
data

You may be interested in finding differences in the 
total number of species in various subsets in your 
data. For example, you could calculate the total 
number of species for each site. You could also be 
interested in differences in the species richness for 
subsets based on the type of management for the 
dune datasets (see chapter on data preparation). 
You could for instance hypothesize that the 
management will influence the species richness. 
You will obtain the following result:

Management n richness
        BF 3       16
        HF 5       21
        NM 6       21
        SF 6       21

You could conclude that species richness is 
lowest for biological farming (BF) since the species 

richness calculated was 16, and it was 21 for the 
other categories of management. The n in the 
output stands for the number of sample units of 
each category. When you check for differences in n 
between the various categories, then you also notice 
that BF has the lowest value. Since both species 
richness and the sample size are different, we are 
not in a good position to compare management 
classes. The difference could be caused either by an 
actual difference in species richness, or a perceived 
difference because of sample size differences. 

The reason is that species richness is dependent 
on the sample size. Study Figure 4.1, for example. 
You can see that the entire area portrayed contains 
7 different species, or a species richness of 7. The 
4 sites separately each have a species richness of 3 
or 4 species. The average species richness of a site 
is 3.5. 

Calculating the average number of 
species for various subsets in the 
data
Instead of being interested in the total number 
of species in each subset of the data, you may be 
interested in finding out differences in the average 
number of species per site in various subsets in 
your data. For example, you could compare the 
average number of species on farms located next 
to forests with the average number of species on 
farms that are not adjacent to forests. In this case, 
the research hypothesis specified that differences 
were expected in the average number of species 
per farm and not necessarily in the total number 
of species. 

To investigate differences in the average number 
of species, regression techniques as described in 
Chapter 6 offer the best approach to analysis. This 
approach does not require that sample sizes are 
equal, as is required to compare the total number 
of species. Note however that the size of the sample 
unit should also be the same, and that the size of 
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the sample unit can be measured in different ways 
as shown below (section: changing the scale of the 
horizontal axis for species accumulation curves). 
To investigate whether differences in species 
richness between farms close and far away from 
the forest could be caused by differences in farm 
size, you could construct species accumulation 
curves for the farms that are close and farms that 
are far and compare the curves (see below: using 
species accumulation curves to compare total 
species richness of various subsets of data).

Constructing species 
accumulation curves
It is important to realize that the total number of 
species of two sites combined is not always equal 
to the sum of the species on site 1 plus the species 
on site 2. This will only be the case if site 1 and 
site 2 do not share any species. If they share some 
species, then the total number of species on the 
two sites combined will be smaller than the sum of 
the richness of each site. Because of this difficulty, 
we need special types of calculation to find the 
number of species for combinations of sites.

Species accumulation curves show the species 
richness for combinations of sites. These curves 
portray the average pooled species richness when 
1, 2, … , all sites are combined together.

The reason that the average pooled species 

richness is calculated is that different combinations 
will have different species richness. For example, 
for the dune dataset, the species richness of site X1 
is 5, for sites X2 and X3 it is 10. In other words, 
there is not a single value for the species richness 
of 1 site. For this reason, we calculate the average 
value. The average species richness for 1 site is 
9.85. 

When we combine sites X1 and X2, then we 
obtain a total combined species richness of 10. 
When we combine sites X3 and X4, then we 
obtain a total combined species richness of 13. 
The average species richness for combinations 
of two sites is 15.11. Note that it not so easy to 
calculate the average pooled species richness for 2 
sites because many different pairs can be formed 
(20 * 19 / 2 = 190 actually). 

Species accumulation curves calculate the 
average species richness for larger combinations of 
sites, such as combinations of 3 or combinations 
of 16 sites, until all possible sizes of combinations 
were investigated. The result for the dune dataset 
are shown below.

The output shows that the average richness 
for all possible combinations of 14 sites is 28.85, 
whereas for all possible combinations of 17 sites it 
is 29.51. The sd indicates the standard deviation 
observed as, by chance, some combinations 
of sites contain small numbers of species, and 
other combinations contain large numbers of 
species. Species accumulation patterns are usually 

Sites    1.000000  2.000000  3.000000  4.000000  5.000000  6.000000  7.000000

Richness 9.850000 15.110526 18.510526 20.937461 22.754321 24.149587 25.239564

sd       2.351064  1.876385  1.572271  1.446958  1.390159  1.353035  1.316480

                                                                     

Sites     8.000000  9.000000 10.000000 11.000000 12.000000 13.0000000

Richness 26.103548 26.798244 27.364962 27.833984 28.227546 28.5620356

sd        1.274903  1.228201  1.176341  1.119344  1.056454  0.9874094

                                                                          

Sites    14.0000000 15.000000 16.000000 17.0000000 18.000000 19.0000000 20

Richness 28.8496388 29.099587 29.319092 29.5140351 29.689474 29.8500000 30

sd        0.9115998  0.828689  0.738092  0.6333903  0.513971  0.3570714  0



42     CHAPTER 4

shown graphically by species accumulation curves. 
Figure 4.2 shows the species accumulation curve for 
the dune dataset. It is important to realize that both 
horizontal and vertical axes show results of pooling 
or combination: on the horizontal axis the sites are 
combined (10 = 10 sites combined), whereas on 
the vertical axis the species are combined (20 = 20 
species combined).

The results below are based on exact calculations 
of the average species richness for combinations of 
sites. Another approach to approximate this average 
species richness is a randomisation approach. For 
example, to find an estimate of the average richness 
for 3 sites, select 3 sites at random from all 30 sites. 
Calculate the species richness. Then select another 

3 sites at random, calculating a second richness. 
Repeat maybe 1000 times. Then the overall 
estimate is the average of the 1000 values. Although 
this randomisation approach is the classic approach 
to calculate species accumulation curves and it is 
based directly on the idea of calculating the average 
species richness of a series of randomly combined 
sites, it is better to use the exact method which will 
usually be faster and more precise.

The results for species accumulation curve 
based on randomisation (calculated from 1,000 
randomisations) for the dune dataset are shown 
below.

Note that you will obtain slightly different results 
when you do this analysis again, since selections 

Figure 4.2  Species accumulation curve for the dune meadow dataset. The bars indicate +2 and -2 standard 
deviations.

Sites    1.00000  2.000000  3.000  4.000000  5.000000  6.000000  7.000000
Richness 9.85100 15.163000 18.654 21.012000 22.829000 24.181000 25.276000
sd       2.42088  2.227868  2.271  2.188297  2.053771  1.911516  1.762081
                                                                               
Sites     8.000000  9.000000 10.000000 11.000000 12.000000 13.000000 14.0000000
Richness 26.096000 26.754000 27.323000 27.788000 28.196000 28.509000 28.7980000
sd        1.587862  1.450375  1.358866  1.246840  1.112124  1.015357  0.9219794
                                                                  
Sites    15.0000000 16.0000000 17.0000000 18.0000000 19.0000000 20
Richness 29.0630000 29.2890000 29.4860000 29.6820000 29.8420000 30
sd        0.8376949  0.7470188  0.6404797  0.5149186  0.3649235  0
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are done at random. The sd again indicates the 
standard deviation observed. You can see that the 
results are similar to the exact results provided 
earlier. Many randomisations are required to 
obtain results that will be very close to the exact 
results. It would not be easy to spot differences 
between plots of both results, however.

Using species accumulation 
curves to compare total species 
richness of various subsets of data
Species accumulation curves are especially useful 
when comparing species richness for subsets in the 
data when sample sizes of subsets are different.

When you calculate species accumulation curves 
for each category of management of the dune 
dataset separately, then you obtain Figure 4.3. 
You can observe the total species richness of 16 
for a sample size of 3 sites for biological farming, 
and the total species richness of 21 for a sample 
size of 5 sites for hobby farming. The results now 
allow comparing species richness at the same 
sample size. For example, we can compare the 4 

categories at sample size 3. We can observe that 
hobby farming has substantially larger species 
richness (19.10) than the three other categories 
(16, 16.2 and 16.25). More importantly, we can 
see that there is little evidence now that nature 
management and standard farming have more 
species than biological farming, although the total 
number of species that was observed for the latter 
categories was larger.

These results emphasize that species richness 
depends on – among other factors - sample size. 
Therefore, a value of species richness without 
indication of sample size is meaningless. You 
need to provide both sample size and species 
richness. For example, you could state that 21 
species were recorded for nature management for 
a sample size of 6 sites of 4 m2. A shorter way of 
communicating this information would be: “21 
species were recorded for nature management 
(n=6)”. The same goes for the entire survey. You 
should indicate that the total species richness of 
30 was recorded for 20 sites. You should definitely 
indicate your sample size when you describe your 
methodology.

Note that we did not make any comparisons 

Figure 4.3  Species accumulation curves for various subsets of the dune meadow dataset based on management.
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of species richness at the scale of the entire 
landscape, but only for areas of equal sample size. 
It is possible that patterns are different in the 
entire landscape, since we only have data from 
a fraction of the total landscape. For example, it 
could be possible that more species occur in the 
entire landscape in standard farming if 95% of 
the total area is under this type of management. 
Although species accumulate more quickly in 
hobby farming (Figure 4.3), a smaller total area of 
farmland under hobby farming could potentially 
result in smaller total richness for hobby farming 
for the entire landscape. It is difficult to compare 
different subsets at the level of the total landscape 
since it is extremely difficult to extrapolate species 
richness beyond the area that was sampled (see 
below: estimating the total number of species of 
the survey area). You could mention important 
differences in coverage of different subsets of 
data that could potentially influence patterns 
at the scale of the entire landscapes that you are 
studying. 

It is also important to realize that similarity or 
difference in species richness does not mean that 
the identities of the species are the same: in the 
example above, it could be that standard farming 
has a subset of the species that occur in hobby 
farming, or it could be that most species under 
standard farming are different from those that 
occur in hobby farming. The species accumulation 
curves do not provide information on overlap in 
species composition. If the objectives of your 
study require understanding differences in species 
composition of the various categories of landuse 
then look at the methods of chapter 8 and 
beyond.

Species accumulation curves 
based on the number of plants 
surveyed
The species accumulation curves that were 
calculated earlier gave values for combinations of 
1, 2 … ,all sites. This is only one method by which 
species accumulation curves can be calculated.

An alternative method of calculating a species 
accumulation curve is not to calculate the average 
number of species for 1, 2, …, all sites, but for 1, 
2, …, all sampled plants (individuals). If you check 
Figure 4.1 again, you could notice that some sites 
have 3 trees whereas other sites have 6 trees. As all 
the sites have the same number of species, you can 
deduct that some sites have fewer species per tree.

For example, assume that the values of the species 
matrix of the dune dataset indicate the number of 
plants observed for every site and for each species. 
The total number of plants is now 685. A species 
accumulation curve can now be calculated by 
selecting the first plant at random from the 685, 
the second plant at random from the remaining 
684 plants, …, until all plants were selected. An 
alternative species accumulation curve will be 
obtained.

This approach has been described as individual-
based species accumulation. The approach where 
sites are combined can be referred to as sample-
based species accumulation.

For some datasets, information is not collected 
from sites, but from observed individuals. Often 
surveys on vertebrates are obtained in this manner, 
recording the species identity for the first observed 
animal, then the identity for the second observed 
animal and so on. In such situations, the only 
accumulation curve that can be calculated is 
an individual-based species accumulation. The 
individual-based species accumulation results for 
the dune dataset are shown on the next page.
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Indiv    34.000000 68.000000 103.000000 137.000000 171.000000 206.000000 240.000000
Richness 17.111627 22.239417  24.702790  26.049452  26.907559  27.520440  27.963881
sd        1.797432  1.733433   1.535193   1.374937   1.253959   1.157158   1.078629
                                                                              
Indiv    274.000000 308.0000000 342.0000000 377.0000000 411.0000000 445.000000
Richness  28.313305  28.5986770  28.8374254  29.0458951  29.2195268  29.369823
sd         1.008308   0.9423203   0.8785947   0.8141377   0.7518479   0.689217
                                                                                    
Indiv    480.0000000 514.0000000 548.0000000 582.0000000 616.0000000 651.0000000 685
Richness  29.5041434  29.6177792  29.7170766  29.8037462  29.8790427  29.9455652  30
sd         0.6236441   0.5579764   0.4891322   0.4151685   0.3324024   0.2278851   0
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Figure 4.4  Species accumulation curve for the dune meadow dataset, based on individual-based species 
accumulation.

Figure 4.4 shows the results. You could have 
noticed that the results do not indicate all 685 
possible combinations of individuals, although the 
species richness can be calculated for any number 
of individuals. The results were only reported for 
multiples of the average number of individuals of 
a site. In the case of the dune meadow dataset, the 
average number of individuals per site is 685/20 
= 34.25. The number of accumulated individuals 
closest to multiples of the average number of 
individuals are listed. These numbers are the 34, 68, 
103, …, 651, 685 printed above for Indiv. An 

integer number is chosen as the individual-based 
species accumulation curve can not be calculated 
for fractional numbers of combined individuals.

Since 34.25 individuals occur on a site on 
average, the results of an individual-based species 
accumulation curve can also be expressed at the 
scale of the expected number of combined sites 
rather than the number of combined individuals. 
The scale can easily be changed by dividing the 
number of combined individuals by the average 
number of individuals per site.  For the dune 
meadow dataset, these numbers of sites equal 
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0.9927007 (= 34/34.25), 1.985401 (= 68/34.25), 
3.007299 (= 103/34.25), …, 19.0072993 (= 
651/34.25) and 20 (= 685/34.25). Since the 
average number of individuals has decimals, it 
is not possible to calculate the individual-based 
species accumulation for exact (integer) numbers 
of accumulated sites.

One of the reasons for only reporting individual-
based species accumulation curves at the scale of 
the expected number of sites is that results become 
very lengthy for large numbers of individuals 
otherwise (in our example reporting the average 
number of species for 1, 2, 3, 4, …, 683, 684, 685 
individuals – many surveys record substantially 
larger numbers of individuals and would require 
lengthier outputs). The most important reason 
for reporting only for multiples of the average 

number of individuals is that the sample-based 
and individual-based species accumulation curves 
can then be plotted on the same graph. Figure 4.5 
gives an example for the dune meadow dataset. 
The reason that the curves can be plotted together 
is that we obtain multiples of the average number 
of individuals when we combine sites at random 
in sample-based species accumulation curves, so 
that both curves can be plotted at the same scale 
(Gotelli and Colwell 2001).

Since we expect multiples of the average number 
of individuals per site, we can also choose to scale 
the horizontal axis by the average number of 
individuals. Figure 4.6 gives an example. Note that 
the shapes of the curves of Figures 4.5 and 4.6 are 
the same, as it is only the scale of the horizontal 
axis that is different.

Figure 4.5  Plot of sample-based 
(∆) and individual-based (O) species 
accumulation for the dune meadow 
dataset.

Figure 4.6  Plot of sample-based 
(∆) and individual-based (O) species 
accumulation for the dune meadow 
dataset. The horizontal axis is scaled 
by the average number of combined 
individuals.
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The difference between the individual-based and 
sample-based species accumulation (as can be 
seen in figures 4.5 and 4.6) is a result of the fact 
that species are not distributed randomly over the 
sites. Remember that individual-based species 
accumulation is based on randomly selecting 
individuals from the entire set of individuals not 
taking site information into account. If both 
curves have similar patterns, you can conclude that 
species are distributed at random over the sites. 

The difference is especially big for the first site 
of the species accumulation curves. Figure 4.6 
shows that you find more species when taking 34 
individuals at random (average species richness = 
17.1) than found on one site selected at random 
(average species richness = 9.8, average number 
of individuals = 34.25). This means that a single 
site is more likely to contain individuals of the 
same species than expected from the frequencies 
of species in the whole survey. These results thus 
show that plants of the same species tend to be 
clustered. 

Changing the scale of the 
horizontal axis for species 
accumulation curves
We can change the scale of the horizontal axis, by 
multiplying or dividing the number of sites by a 
specific number. We can make this choice of scaling 
for the horizontal axis both for the sample-based 
and individual-based species accumulation curve. 
The shapes of the curves will remain the same. 

However, when comparing different subsets in 
the data, then different patterns will be obtained by 
changing between number of sites and the number 
of individuals on the horizontal axis. Figure 4.7 gives 
an example. The subsets based on management of 
the dune meadow datasets were used again, and 
a sample-based species accumulation pattern was 
calculated, but in contrast with Figure 4.3, the 
scale of the horizontal axis was now based on the 
number of individuals. Because the total number 
of individuals is different, the relative positions of 
the curves will change.

Figure 4.7  Sample-based species accumulation curves for various subsets of the dune meadow dataset based on 
management. The horizontal axis is scaled by the average number of combined individuals.
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You can see now that hobby farming does not have 
a curve above the other curves as was seen in Figure 
4.3. The reason for this pattern is that hobby 
farming had the largest number of individuals of 
the 4 categories. In this situation, we can conclude 
that the pattern observed for sample-based species 
accumulation curves (Figure 4.3) are mainly 
a result from differences in density between 
management systems. It will often be a good idea 
to compare sample-based with individual-based 
species accumulation to get a feel of the influence 
of density on sample-based results. And of course 
it is also important to summarize what these 
differences in plant density are. They may turn 
out to be a key aspect of the differences.

You can choose for other methods of scaling the 
horizontal axis. You could for instance scale the 
horizontal axis by the average size of the site. This 
would result in a different pattern in case sizes of 
sites are not constant. Since different patterns can 
be obtained, it is important that you started your 
study with clear objectives on how the results will 
be compared.

To summarize, you have two options to construct 
species accumulation curves. The first option 
is to either accumulate sites or to accumulate 
individuals. The second option concerns how you 
scale the horizontal axis of the species accumulation 
curve. The horizontal axis needs to be scaled by an 
average for all the sites. This average could be the 
average number of sites per site (=1 site/site), the 
average number of individuals per site, the average 
area per site, or you may think of others! 

The important message here is that since 
species richness depends on sample size, and since 
sample size can be measured by different methods 
(number of sites, size of sample area, number 
of individuals, …), then different results can be 
obtained for different sample sizes. You should 
always mention the method that you used to 
determine sample size, and if possible compare 
results for different sample sizes. You should make 
sure that the method that you use meets your 

initial objectives for conducting the survey, since 
calculation of species accumulation curves should 
never be an end in itself.

Estimating the total number of 
species of the survey area
In most situations, we record the number of species 
for a number of sites. Normally we will not cover 
the entire area that we are interested in. We will 
not know the species composition of the area that 
we did not sample. However, since species richness 
depends on sample size, we can expect that we will 
not have recorded all the species that occur in the 
survey area. 

Some formulae were developed to estimate 
the total number of species of a survey area 
(e.g. Longino et al. 2002). In terms of species 
accumulation curves, we need to extrapolate the 
curve until the point on the x axis corresponding 
to the whole study area. The estimation methods 
are based on different mathematical methods for 
extrapolation. These formulae depend on the 
fact that the sites were selected at random from 
the entire survey area. Different formulae make 
different assumptions of how species accumulate 
beyond the sampled sites. Probably one method 
will be more precise in one situation, and another 
method will be better for a second situation. Since 
you have no data to check for the accuracy of an 
extrapolation, you can not determine the best 
extrapolation method for your data. Any results 
from these methods have to be treated with 
caution. 

If you want to extrapolate, then the best approach 
is to report the range in values obtained with the 
different methods and expect that the correct total 
richness lays somewhere within that range. For the 
dune meadow dataset, some predictions of total 
species richness (using the first- and second-order 
Jackknife, Chao and bootstrap formulae) are:
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    Jack.1
all  32.85
    Jack.2

all  33.84
     Chao
all 32.25
     Boot
all 31.54

You can see that these estimates are quite 
similar, giving a range of  31-34 species. This 
is not surprising given the shape of the species 
accumulation curves, which flatten off for large 
numbers of sites, suggesting that the sampling 
has captured nearly all the species in the study 
area. In other situations, the estimates will differ 
more strongly. This will be the case if the species 
accumulation curves are still climbing at the right 
hand end. For such curves there are many ways 
they can be extrapolated, hence a wide range 
of answers. The specialist software EstimateS 
(http://viceroy.eeb.uconn.edu/EstimateS) was 
developed especially to calculate estimations of 
total diversity.

Calculating genus richness or 
family richness
You can calculate accumulation curves for the 
number of genera, number of families, or any other 
taxonomic level for which you have appropriate 
data. You could also calculate accumulation curves 
at intraspecific levels, such as for specific alleles. To 
be able to calculate those curves, you need to modify 
the species matrix so that the columns will refer to 
genera or families. This will be easy with a good 
database where you keep your data (see Chapter 
2). The rest of the procedure is the same as for the 
calculation of species accumulation curves.

Some other methods of species 
accumulation
The methods described earlier were based on 
random accumulation of sample plots. Some 
other methods use the spatial configuration of 
sample plots.

One spatial method constructs a species 
accumulation curve based on a complete inventory 
of an area. This means that there are no unsampled 
areas within the area. This method has been used 
for 50-ha forest surveys, for instance (Plotkin et 
al. 2000). The total area is then subdivided, and 
the average species richness for half the area is 
estimated. The average species richness is then 
calculated for further subdivisions. For example, 
the average species richness is calculated for the 
two 25-ha halves, for the four 12.5-ha quarters 
and for the eight 6.25-ha subdivisions.

Another spatial method is also based on the 
species richness for sample plots of different sizes. 
Randomly in an area, sample plots of different size 
classes are placed. Afterwards, the average species 
richness for each size class is calculated.

Yet another method is to select the first sample 
plot at random, then add the second sample plot 
that is nearest, then the third that is second nearest 
and so on. 

You can use these methods when you are 
specifically interested in the influence of spatial 
proximity of sites on the species accumulation 
curves. You could compare the curve that uses the 
spatial configuration with the curve that is based 
on random combination of sites to get an idea of 
the influence of spatial proximity. The approach 
is similar to the comparison of the sample-based 
and individual-based species accumulation curves. 
As always, you should only conduct this type of 
analysis if you have a clear objective for doing so.
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Doing the analyses with the menu options of Biodiversity.R
Select the species and environmental matrices:

Biodiversity > Environmental Matrix > Select environmental matrix
 Select the dune.env dataset
Biodiversity > Community Matrix > Select community matrix
 Select the dune dataset

To calculate the total number of species:
Biodiversity > Analysis of diversity > Diversity indices…
 Diversity index: richness
 Calculation method: all

To calculate the total species richness for separate sites:
Biodiversity > Analysis of diversity > Diversity indices…
 Diversity index: richness
 Calculation method: separate per site

To compare the total number of species for various subsets of data:
Biodiversity > Analysis of diversity > Diversity indices…
 Diversity index: richness
 Calculation method: all
 Subset options: Management
 Subset: .

To calculate a sample-based species accumulation curve 
Biodiversity > Analysis of diversity > Species accumulation curves…
 Accumulation method: exact
 Accumulation method: random (alternative to the exact method)

To calculate a sample-based species accumulation curve scaled by the number of accumulated individual 
plants:

Biodiversity > Analysis of diversity > Diversity indices…
 Diversity index: abundance
 Calculation method: separate per site
 Output options: save results
Biodiversity > Analysis of diversity > Species accumulation curves…
 Accumulation method: exact
 Scale of x axis: abundance
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To calculate an individual-based species accumulation curve scaled by the number of accumulated 
individual plants:

Biodiversity > Analysis of diversity > Diversity indices…
 Diversity index: abundance
 Calculation method: separate per site
 Output options: save results
Biodiversity > Analysis of diversity > Species accumulation curves…
 Accumulation method: rarefaction
 Scale of x axis: abundance

To compare species richness between various subsets in the data using species accumulation curves
Biodiversity > Analysis of diversity > Species accumulation curves…
 Accumulation method: exact
 Subset options: Management
 Subset: .

Calculating the expected species richness for the entire survey area:
Biodiversity > Analysis of diversity > Diversity indices…
 Diversity index: Jack.1
 Calculation method: all
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Doing the analyses with the command options of Biodiversity.R 
To calculate the total number of species:

Diversity.1 <- diversityresult(dune, index=’richness’)
Diversity.1

To calculate the total species richness for separate sites:
Diversity.2 <-  diversityresult(dune, index=’richness’, 
method=’s’)

Diversity.2
summary(Diversity.2)
Diversity.3 <- diversityresult(dune[1:2,], index=’richness’)
Diversity.3

To compare the total number of species for various subsets of data:
Diversity.4 <- diversitycomp(dune, y=dune.env, 
factor1=’Management’, index=’richness’ ,method=’all’)

Diversity.4

To calculate a sample-based species accumulation curve 
Accum.1 <- accumresult(dune, method=’exact’)
Accum.1
accumplot(Accum.1)
Accum.2 <- accumresult(dune, method=’random’, 
permutations=1000)

Accum.2
accumplot(Accum.2)

To calculate a sample-based species accumulation curve scaled by the number of accumu-
lated individual plants

dune.env$site.totals <- apply(dune,1,sum)
Accum.3 <- accumresult(dune, y=dune.env, scale=’site.totals’, 
method=’exact’)

Accum.3
accumplot(Accum.3, xlab=’pooled individuals’)
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To calculate an individual-based species accumulation curve (first scaled by the number of 
sites in Accum.4, then by the number of accumulated plants in Accum.5) 

Accum.4 <- accumresult(dune, method=’rarefaction’)
Accum.4
accumplot(Accum.4)
dune.env$site.totals <- apply(dune,1,sum)
Accum.5 <- Accum.5 <- accumresult(dune, y=dune.env, 

scale=’site.totals’, method=’rarefaction’)
Accum.5
accumplot(Accum.5, xlab=’pooled individuals’)

To compare species richness between various subsets in the data using species accumula-
tion curves

Accum.6 <- accumcomp(dune, y=dune.env, factor=’Management’, 
method=’exact’)
Accum.6
dune.env$site.totals <- apply(dune,1,sum)
Accum.7 <- accumcomp(dune, y=dune.env, factor=’Management’, 

scale=’site.totals’, method=’exact’, xlab=’pooled 
individuals’)

Accum.7

To calculate a collector’s curve 
Accum.8 <- accumresult(dune, method=’collector’)
Accum.8
accumplot(Accum.8)

Calculating the expected species richness for the entire survey area
Diversity.5 <- diversityresult(dune, index=’Jack.1’)
Diversity.5
Diversity.6 <- diversityresult(dune, index=’Jack.2’)
Diversity.6
Diversity.7 <- diversityresult(dune, index=’Chao’)
Diversity.7
Diversity.8 <- diversityresult(dune, index=’Boot’)
Diversity.8
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Analysis of diversity

Analysis of diversity
This chapter describes some methods of 
investigating diversity. First, the concept of 
diversity is introduced. Then some methods of 
calculating and comparing diversity are discussed.

Diversity entails richness (or the number of 
species) and evenness (or equality in the number 
of individuals for every species).

Where is diversity the highest?
In this chapter, some methods are introduced to 
calculate the diversity of a specific site (a sample 

plot in a forest, a farm, a village, …). Consider 
Figure 5.1, for instance. You may be interested 
in finding out whether the diversity is higher 
in site B than in site A. You could for instance 
have a hypothesis that the diversity in site B is 
greater because temperatures are higher in site 
B. This chapter will only describe the methods 
of calculating the diversity of a site. To test a 
hypothesis for the relationship between some 
explanatory factors of diversity and diversity of a 
site, you will need to use a regression method as 
described in chapter 6 and two sites will definitely 
not be a large enough sample size to investigate 
such hypothesis.

Figure 5.1 (a)  Various sites differ in the number of species and in the number of trees of each species.
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Figure 5.1 (b)  Sites that are more diverse have a profile (the line in the diagram) that is higher, therefore the 
diversity ordering is: B > A = D > C.

What is diversity?

In general, diversity refers to the number of 
categories that can be differentiated, and to the 
proportions (or relative abundances) of the 
number of objects in each category. When we 
study tree species diversity, the categories refer to 
different species, whereas the objects are the trees 
that are counted.

Imagine that you have 2 sites: site A has 3 tree 
species, whereas site B has 5 tree species. In this 
situation, site B has the largest species richness. 
This situation is depicted in Figure 5.1.

Imagine another situation where both site C 
and site D contain 3 species. However, site C is 
dominated by one species that has 4 trees out of 
the total number of 6 trees on the entire site (or 
a proportion of 4/6). The other two species have 
proportions of 1/6. In site D, each species has the 
same number of trees (or proportions of 2/6). 
In this situation, site D has the largest evenness, 
which means that the proportions of the individual 
species are more similar. In this situation, the 
proportions are actually all the same for site D, so 
evenness is maximum for this site. This situation 
is also shown in Figure 5.1.

Sites A and D (Figure 5.1) have the same 
proportions. Since both sites have the same 
proportions and the same number of species, they 
have the same diversity. Diversity does not depend 
on density or total abundance.

Sites of maximum evenness will have proportions 
of 1/S for each species, where S is the number of 
species (the species richness). For example, a plot 
with 5 species of maximum evenness will have 
proportions of 1/5 for each species, whereas a farm 
with 10 species of maximum evenness will have 
proportions of 1/10 for each species. If 100 trees 
were recorded in total, then 5 species will be most 
evenly distributed when each species has 100/5 = 
20 trees.

On the other hand, a site of minimum evenness 
will have only 1 tree for the S-1 less frequent species 
and Tot - (S-1) trees for the dominant category, if 
Tot indicates the total number of trees. If a site 
contains 6 trees and 3 species, the minimum 
evenness will be where 2 species contain 1 tree 
and the remaining species contains 6-2=4 trees. If 
a site contains 100 trees and 5 species, then with 
minimum evenness the dominant species will 
contain 100-4=96 trees.
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In most situations, the evenness will be in between 
the maximum and minimum evenness.

Since diversity refers to richness and evenness, 
both these facets need to be considered when 
comparing diversity. If evenness is the same for 
the sites (sites, farms, sample plots) that you 
are comparing, then differences in richness will 
correspond to differences in diversity. If the 
richness is the same, then differences in evenness 
will correspond to differences in diversity. There 
will be situations, however, where one site has larger 
richness but lower evenness than another site. In 
these situations, it is not always possible to rank one 
site as higher in diversity than the other site. 

Rank-abundance curves
Rank-abundance curves are conceptually the 
easiest method of analysing patterns of diversity. 

First, the total number of individuals is calculated 
for each species. Second, species are ranked from 
the most abundant to the least abundant. Finally 
a plot is constructed with the rank number on the 
horizontal axis, and the abundance on the vertical 
axis. 

For example, the rank-abundance pattern for 
the dune meadow dataset (we treated the values 
in the cells of the species matrix as if they were 
counts of individuals) is: 

       rank abundance proportion 
Poatri    1        63        9.2 
Lolper    2        58        8.5 
Leoaut    3        54        7.9
Brarut    4        49        7.2
Agrsto    5        48        7.0
Poapra    6        48        7.0
Trirep    7        47        6.9
Alogen    8        36        5.3
Elyrep    9        26        3.8
Plalan   10        26        3.8
Elepal   11        25        3.6
Antodo   12        21        3.1
Sagpro   13        20        2.9
Junart   14        18        2.6
Rumace   15        18        2.6
Achmil   16        16        2.3
Brohor   17        15        2.2
Ranfla   18        14        2.0
Belper   19        13        1.9
Junbuf   20        13        1.9
Salrep   21        11        1.6
Calcus   22        10        1.5
Hyprad   23         9        1.3
Tripra   24         9        1.3
Airpra   25         5        0.7
Potpal   26         4        0.6
Viclat   27         4        0.6
Cirarv   28         2        0.3
Empnig   29         2        0.3
Chealb   30         1        0.1
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Figure 5.2  Rank-abundance curve for the dune meadow dataset.

The results given before are normally provided as a 
rank-abundance curve such as Figure 5.2.

You can see that Poa trivialis was ranked 1 as 
this species had the largest total abundance of 63, 
and that Chenopodium album was ranked 30 since 
this species had the lowest total abundance of 1. 
Figure 5.2 shows the rank-abundance curve for 
this dataset. You could create an alternative rank-
abundance curve by plotting the proportion 
instead of the abundance on the vertical axis. 
The shape of the curve would remain the same, 
since only the scaling of the vertical axis would be 
different (note also that the proportion was given 
as percentage by multiplying all proportions with 
100%). Other alternatives include plotting the 
logarithm of abundance on the vertical axis – this 
could produce better graphs when a few species 
are highly dominant.

The interpretation of a rank-abundance 
curve in terms of diversity, i.e. richness and 
evenness, is as follows. On the horizontal axis, 
species richness is provided by the width of the 
curve. A wider curve will indicate higher species 
richness. The shape of the rank-abundance curve 

is an indication of the evenness. A completely 
horizontal curve is an indication of a completely 
evenly distributed system. The steeper the curve, 
the less evenly species are distributed.

Figure 5.3 provides the rank-abundance curves 
for the four sites shown in Figure 5.1. The 
proportion is plotted on the vertical axis. Note 
that sites A and D have the same rank-abundance 
curve when scaled to proportion (each species has 
proportion = 1/3). You can see from the widths 
of the rank-abundance curves of Figure 5.3 that 
one site has species richness of 5, whereas the 
other sites have richness 3. You can also see that 
three sites have completely horizontal profiles 
or completely evenly distributed species. You 
can notice one site with a declining profile, 
indicating that some species have higher 
abundance than others. In other words, species 
are not evenly distributed for this last site. Based 
on this information, you could classify site B as 
the most diverse (highest richness [=widest] and 
evenness [=most horizontal]), and site C as the 
least diverse (lowest richness [=narrowest] and 
evenness [=least horizontal]).
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Figure 5.3  Rank-abundance curves for the 4 sites of Figure 5.1. Abundance is proportional abundance (percentage 
of each species of total abundance).

Models for rank-abundance curves

Various studies have been conducted to model 
specific rank-abundance distributions. By 
fitting a model, the shape of a particular rank-
abundance distribution may be summarized by a 
few parameters. As some models are derived from 
theoretical assumptions about the ways in which 
species could coexist, the observation of a rank-
abundance distribution that conforms to a particular 
model provides some evidence that the conditions 
that generate the model could apply to a particular 
survey. This could be important information since 
the question why species differ in abundance has 
been an important topic of biodiversity research. 

A thorough discussion of rank-abundance 
distribution models is beyond the scope of this 

manual. The interested reader could consult a 
specialized text such as Hubbell (2001). Models 
should not be fitted because it is possible, but 
because the information that they provide is useful. 
If you only want to summarize the rank-abundance 
distribution, you should reconsider whether you 
would not provide better information by just 
providing the actual rank-abundance curve.

Different models have been formulated to describe 
rank-abundance distributions, including the log-
normal, log series and geometric distributions. 
Fitting these distributions to data is not difficult 
but it is often difficult to choose the one model that 
provides the best fit to the data.

When you attempt to fit several models to the 
dune meadow dataset, you will obtain following 
results:

RAD models, family poisson 
No. of species 30, total abundance 685

Warning: NAs introduced by coercion
              par1    par2    par3 Deviance     AIC     BIC
Preemption 0.09674                   16.852 155.570 156.972
Lognormal        3       1           38.217 178.936 181.738
Veiled.LN        3       1       1   38.217 180.936 185.140
Zipf       0.14817      -1          106.934 247.653 250.455
Mandelbrot     Inf -463703 4621740   15.204 157.923 162.127
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It is easy to compare the fits graphically in this 
example as shown in Figure 5.4. Figure 5.4 shows 
the fit of the various models. Visually comparing 
the difference in the actual values and the predicted 
values allows you to choose a model that might 
fit your purpose. Of those in Figure 5.4, none 
capture the curvature of the observed distribution 
at high and particularly the low abundance end 
of the distribution. Over much of the range the 
veiled lognormal curve seems to fit best. Note that 
a logarithmic scale was used on the vertical axis.

An additional method of choosing the best 
distribution that you could use together with the 
graphical evaluation is to choose the model with 
the lowest AIC or BIC (Akaike’s Information 
Criterion or the Bayesian Information Criterion; 
these are statistics that indicate goodness-of-fit of 
a model – lower values indicate better fits). For the 
dune meadow dataset, we might thus prefer the 
pre-emption model. But note that the statistics 
such as deviance, AIC and BIC only measure some 
aspects of fit, and they might not be the aspects 
you are most interested in. 

Rényi diversity profiles

Rényi diversity profiles are curves that also provide 
information on richness and evenness, as rank-
abundance curves do. Rényi diversity profiles have 
the advantage over rank-abundance curves that 
ordering from lowest to highest diversity is easier. 
For this reason, a Rényi diversity profile is one of 
several diversity ordering techniques (Tóthmérész 
1995). The disadvantage of these curves is that 
information on the proportions of each species is 
not provided any longer.

Figure 5.1b provides the Rényi profiles for the 
same sites shown in Figure 5.3. The interpretation 
of a profile is as follows. The shape of the profile is 
an indication of the evenness. A horizontal profile 
indicates that all species have the same evenness 
– the same situation as for rank-abundance curves. 
The less horizontal a profile is, the less evenly 
species are distributed. In Figure 5.1b, we see that 
3 sites have horizontal profiles, which means that 
species are completely evenly distributed for these 

Figure 5.4  Fits of various models to the rank-abundance distribution of the dune meadow dataset.
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sites. Site C has a profile that declines from left 
to right. This indicates that species are not evenly 
distributed for this site. The starting position at 
the left-hand side of the profile is an indication of 
the species richness. Profiles that start at a higher 
level have higher richness.

The major advantage of Rényi diversity profiles 
is that sites can easily be ordered from high to low 
diversity. If the profile for one site is everywhere 
above the profile for another site, then this means 
that the site with the highest profile is the more 
diverse of the two. From Figure 5.1b, you can for 
instance see that site B is the most diverse, and 
site C is the least diverse. If the profiles intersect, 
it is not possible to order the sites from lowest to 
highest diversity. It is possible that one site has 
larger species richness, but lower species evenness, 
although this is not a necessary condition for 
intersecting profiles.

If one diversity profile is higher than another, 
then the corresponding cumulated proportions 
of the rank-abundance curve will be lower. The 
cumulated proportions are calculated as the sum 
of the proportions of the rank-abundance curve 

for 1, 2, 3, …, all species. Figure 5.5 shows the 
cumulated proportions for the rank-abundance 
curves of Figure 5.3. The curve that is lowest 
everywhere in the figure corresponds to the site 
with the highest diversity – in this example, this is 
site B. You can verify that the ranking of diversity 
that is portrayed in Figure 5.5 (B > A = D > C) is 
the same as the ranking of Figure 5.1b.

Since the shape of the Rényi diversity profiles 
is influenced by evenness, you can compare the 
evenness of various sites by only looking at the 
shape of these curves. Rényi evenness profiles 
are a more direct method of comparing evenness 
(Ricotta 2003, Kindt et al. in press). These evenness 
profiles only reflect differences in evenness. The 
way that the evenness profiles are interpreted is 
similar to the way that diversity profiles should 
be interpreted, and the only difference is that a 
graphical comparison of evenness rather than of 
diversity is provided. An area of larger evenness 
will have an evenness profile that is everywhere 
above the evenness profile of an area of lower 
evenness. Intersecting evenness profiles means that 
no ranking in evenness can be provided. Figure 5.6 

Figure 5.5  Cumulated proportions (%) for the 4 sites of Figure 5.1. This is an alternative diversity ordering technique 
to the Rényi diversity profile, with the lowest curve over the entire range indicating the site of highest diversity.
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Interpretation of some Rényi 
diversity profile values
Some of the values of the Rényi diversity profile 
provide some specific details on the corresponding 
site. The values used to construct Figure 5.1b are 
for instance:

  

  0        0.25     0.5       1         2         4         8         Inf
A 1.098612 1.098612 1.0986123 1.0986123 1.0986123 1.0986123 1.0986123 1.0986123
B 1.609438 1.609438 1.6094379 1.6094379 1.6094379 1.6094379 1.6094379 1.6094379
C 1.098612 1.040010 0.9808293 0.8675632 0.6931472 0.5380261 0.4633843 0.4054651
D 1.098612 1.098612 1.0986123 1.0986123 1.0986123 1.0986123 1.0986123 1.0986123

provides the evenness profiles for the same sites 
as Figure 5.1b. You can see from Figure 5.6 that 
three sites have the same and complete evenness 
(horizontal profiles), and one site has unevenly 
distributed species (site C).

You can calculate one Rényi diversity profile for 
an entire dataset, or separate profiles for each site. 
Figure 5.7 provides the Rényi diversity profile for 
the separate sites of the dune meadow dataset. 

You can observe in Figure 5.7 that many 
profiles are intersecting. This means that many 
sites can not be ranked from highest to lowest 
diversity. Since the profile for site X1 is lowest 
over its entire range, this is clearly the site with 
the lowest diversity. There is not a site with the 
highest diversity of all sites. Site X5 has the largest 
richness, but the profile for this site intersects with 

some other profiles as those for X6 and X8. X5 
can thus not be classified as the most diverse site.

Figure 5.8 shows the evenness profiles for 
the separate sites. These curves show that the 
evenness is the largest for site X20, and the lowest 
for site X13. The intersections of the profiles (for 
instance for X1 and X4) indicate that it is not 
possible to rank those sites from lowest to highest 
evenness.
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Figure 5.7  Rényi diversity profiles 
for the separate sites of the dune 
meadow dataset.

Figure 5.8  Rényi evenness 
profiles for the separate sites of the 
dune meadow dataset.

Figure 5.6  Rényi evenness 
profiles for the 4 sites of 
Figure 5.1.
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Each value of the Rényi diversity profile is based 
on a parameter 'alpha'. Box 5.1 shows how 
the profile value is calculated from the species 
proportions and the alpha parameter.

The profile values for alpha=0 provide 
information on species richness. The profile value 
is the logarithm of the species richness. For site 
A, 1.098612 = ln(3). Thus, if you take the anti-
logarithm (y=exp(x)) of a Rényi diversity profile, 
you will obtain the species richness at alpha=0. 
For site B, species richness = 5 = exp(1.609438). 
This is the reason that profiles that start at a 
higher level correspond to sites that are richer.

The profile value for alpha=infinity provides 
information on the proportion of the most 
abundant species. The profile value for 

Box 5.1  How to calculate the Rényi diversity profile?

The formula to calculate the diversity profile is:

 
 

     
   

 
 

   
   

 

 

alpha=infinity for system C equals 0.4054651. 
When you take the anti-logarithm (y=exp(x)), 
and then take the reciprocal value, then you will 
obtain the proportion of the most dominant 
species. For system C, the proportion of the most 
dominant species = 4/6 = 1/exp(0.4054651). 
As a consequence, profiles that are higher at 
alpha=infinity have a lower proportion of 
the dominant species. A larger evenness thus 
corresponds with lower proportions of the 
dominant species.

The profile value for alpha=1 is the Shannon 
diversity index (discussed in the next section). 
The profile value for alpha=2 is the logarithm of 
the reciprocal Simpson diversity index (see next 
section).
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Diversity indices
Diversity indices provide a summary of richness 
and evenness by combining these two facets of 
diversity into a single statistic. There are many 
ways by which richness and evenness can be 
combined, and this has resulted in many different 
diversity indices. Some of the common diversity 
indices are the Shannon, Simpson, and log series 
alpha diversity indices. A larger Simpson index 
will indicate lower diversity, hence it is better to 
analyse the reciprocal value of the Simpson index. 
An alternative approach is to report 1-Simpson 
index. 

For the dune meadow dataset, you will obtain 
following results for the Shannon and 1-Simpson 
diversity indices (for each diversity index, the 
sites are sorted in increasing order) (shown on the 
right-hand side):

Diversity indices are a more compact method 
of comparing diversity. However, one diversity 
index will often not provide sufficient information 
to order sites from high to low diversity. Only 
diversity ordering techniques such as the Rényi 
diversity profiles will provide enough information 
that will allow you to conclude that one site is 
more diverse than another site. The reason for 
this phenomenon is actually that not all entities 
can be ordered from lowest to highest diversity (as 
shown earlier for the dune meadow dataset, see 
Figure 5.7).

It is true that if site A is more diverse than site 
B, that then the diversity index of site A will be 
larger. It is however not necessarily true that if the 
diversity index of site A is larger than the diversity 
index of site B, that then the diversity of site A is 
larger.

You could see in this dataset that the Shannon 
index of site X13 > X20, but that for the Simpson 
index X13 < X20. This is one illustration of the 
fact that a single diversity index may not provide 
sufficient information for diversity ordering. In 
Figure 5.7, you can see the intersection in the 
profiles of X13 and X20.

    Shannon
X1    1.440
X14   1.864
X17   1.876
X16   1.960
X15   1.979
X20   2.048
X18   2.079
X13   2.100
X11   2.106
X12   2.114
X19   2.134
X3    2.194
X2    2.253
X6    2.346
X10   2.399
X4    2.427
X8    2.435
X7    2.472
X9    2.494
X5    2.544

    inverseSimpson
X1           3.767
X14          6.000
X17          6.081
X16          6.368
X15          6.696
X13          6.764
X18          7.218
X11          7.529
X20          7.567
X12          7.609
X19          7.942
X3           8.247
X2           9.093
X6          10.017
X4          10.075
X10         10.330
X7          10.811
X8          10.959
X9          11.308
X5          11.629
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Figure 5.9  Accumulation pattern for the average Rényi diversity profiles for the dune meadow dataset.

Comparing the total diversity of 
different subsets of the dataset

Similarly to comparisons of species richness, you 
need to be cautious if you want to compare the 
total diversity of various subsets in your data when 
these subsets have different sample sizes. As for 
species richness, diversity indices will also change 
when sample size is increased. This is to be expected 
since diversity indices provide information on 
richness and evenness – so if richness changes with 
sample size, then diversity will change too.

If you want to compare the total diversity of subsets 
in your data, then you need to calculate the diversity 
for subsets in your data that have the same sample 
size. A procedure similar to the randomisation 
approach discussed for species accumulation curves 

can be used. This procedure involves taking random 
subsets of the data and calculating a diversity profile 
for the subset. By randomized resampling of the 
subsets, average values of the diversity profiles can 
be obtained. Figure 5.9 shows an accumulation 
pattern for the average Rényi diversity profile for 
the dune meadow dataset.

If we want to compare the diversity of the 
different management categories of the dune 
meadow dataset for example, then we need to 
compare the diversity at the same sample size for 
the various categories. In this dataset, the largest 
sample size at which this is possible is 3, the 
number of sites of hobby farming. The results of a 
comparison at sample size 3 for the dune meadow 
dataset is shown in Figure 5.10. From this figure, 
you could conclude that hobby farming is the 
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most diverse category when comparing average 
diversity profiles for combinations of 3 sites.

As for species accumulation curves, there are 
various options to measure the same sample size. 
You could either choose the number of sites as a 
measure of sample size, or the number of plants, 
or the area that was sampled – and some other 
measures could theoretically be chosen too.

As we saw in the previous chapter, it is not 
necessarily so that hobby farming will be the most 
diverse at the scale of the entire landscape, although 
it is the most diverse at sample size 3. It could be 
possible that only 5% of the entire landscape is 

under hobby farming whereas standard farming 
could be 80% of the landscape. In such situations, 
standard farming could be more diverse at the 
scale of the entire landscape. Since we have only 
sampled a fraction of the landscape and since 
extrapolation is difficult, we have no evidence that 
standard farming or hobby farming is more diverse 
at the landscape level. When your primary interest 
is to understand the distribution of biodiversity, 
then it may also be worthwhile to investigate 
differences in species composition (Chapter 8 and 
beyond) rather than differences in total diversity 
of different subsets in your data.

Figure 5.10  Comparison of diversity for the management categories of the dune meadow dataset. Results are based 
on 100 randomisations.
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Doing the analyses with the menu options of Biodiversity.R

Select the species and environmental matrices:

Biodiversity > Environmental Matrix > Select environmental matrix
 Select the dune.env dataset
Biodiversity > Community Matrix > Select community matrix
 Select the dune dataset

To calculate and plot a rank-abundance curve:

Biodiversity > Analysis of diversity > Rank abundance…

To model a rank-abundance curve:

Biodiversity > Analysis of diversity > Rank abundance…
 Plot options: fit RAD

To calculate and plot a Rényi diversity profile:

Biodiversity > Analysis of diversity > Renyi profile…
 Calculation method: all

To calculate and plot a Rényi diversity profile for each site separately:

Biodiversity > Analysis of diversity > Renyi profile…
 Calculation method: separate per site

To calculate diversity indices for each site:

Biodiversity > Analysis of diversity > Diversity indices…
 Diversity index: Shannon
 Calculation method: separate per site

To compare diversity between subsets of the dataset:

Biodiversity > Analysis of diversity > Renyi profile…
 Calculation method: separate per site
 Subset options: Management
 Subset: .

To calculate accumulation patterns for the Rényi diversity profile

Biodiversity > Analysis of diversity > Renyi profile…
 Calculation method: accumulation
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Doing the analyses with the command options of Biodiversity.R 

To calculate and plot a rank-abundance curve:
RankAbun.1 <- rankabundance(dune)
RankAbun.1
rankabunplot(RankAbun.1, scale=’abundance’) 
rankabunplot(RankAbun.1, scale=’proportion’)

To model a rank-abundance curve:
radfitresult(dune)

To calculate and plot a Rényi diversity profile:
Renyi.1 <- renyiresult(dune)
Renyi.1
renyiplot(Renyi.1)

renyiplot(Renyi.1, evenness=TRUE)

To calculate and plot a Rényi diversity profile for each site separately:
Renyi.2 <- renyiresult(dune, method=’s’)
Renyi.2
renyiplot(Renyi.2)

renyiplot(Renyi.2, evenness=TRUE)

To calculate diversity indices for each site:
Diversity.1 <- diversityresult(dune, index=’Shannon’ 
,method=’s’)

Diversity.1
Diversity.2 <- diversityresult(dune, index=’Simpson’ 

,method=’s’)
Diversity.2
Diversity.3 <- diversityresult(dune, index=’Logalpha’ 

,method=’s’)

Diversity.3

To compare diversity between subsets of the dataset:
Renyi.3 <- renyicomp(dune, y=dune.env, factor=’Management’, 

permutations=100)

Renyi.3

To calculate accumulation patterns for the Rényi diversity profile
Renyi.4 <- renyiaccum(dune, permutations=100)
Renyi.4
renyiaccumplot(Renyi.4)
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Analysis of counts of trees

Analysis of counts of trees
One way by which patterns in the species matrix can 
be analysed is to analyse for each species separately. 
In this manual, we describe two methods by which 
species can be analysed separately: (i) analysing 
the counts obtained throughout the survey; and 
(ii) analysis of species presence-absence data. The 
latter method is described in the next chapter.

This section describes the analysis of species 
abundance as the number of individuals. The 
methods could also be used to analyse the total 
number of individuals per site, or the total 
number of species per site. Other measures of 
species abundance such as cross-sectional area or 
cover percentages could also be analysed. 

Regression models are introduced and used in 
this chapter. They are a basis for much statistical 
analysis and there is much that could be said about 
them. Here we can only point in few directions.

What is a regression model?
Regression analysis is a method by which the 
pattern in one response variable is predicted from 
the pattern of one or several explanatory variables. 
The better the predictions explain the pattern, the 
better the model represents the data.

Imagine that you want to analyse the influence 
of elevation (the explanatory variable) on the 
abundance of a certain Acacia species (the 
response variable). To analyse the relationship, 
you measured the abundance of the species and 
the elevation on 11 sample plots, taking samples 
at regular elevation intervals of 100 m in between 
500 and 1500 m. If you want to examine the 

relationship between abundance and elevation, 
then start by plotting the data and looking for a 
pattern. If there appears to be a linear relationship 
between elevation and abundance, then you could 
describe this relationship with a linear regression 
model (we will see that many types of regression 
models exist). The linear regression model will 
model the relationship between elevation and 
abundance as a straight line. To predict the 
position of the straight line, the linear regression 
model will estimate the parameters a and b of the 
following regression model: Abundance = a + b × 
elevation + deviation. Once the parameters a and 
b are estimated, the straight line that predicts the 
expected abundance for a specific elevation can be 
calculated. The performance of the model can be 
measured by how well it describes the variation 
in abundance. When the differences between 
the measured abundance and the predicted 
abundance are small, then the variance explained 
by the model will be large. It is also possible to test 
the hypothesis of no relationship. The significance 
level (P) is sometimes used to decide whether there 
is evidence for a relationship or not.

Figure 6.1 gives examples of observations and 
predictions from a linear regression model for 
four species. The variance explained by the model 
decreases from Species 1 to Species 4, which can be 
observed from the larger differences between the 
observed abundances (circles) and the predicted 
abundances (straight line). The significance level 
for the test of no relationship between elevation 
and abundance also increases from Species 1 
to Species 4. For Species 4, there is no evidence 
for a linear relationship between elevation and 
abundance (P = 0.14) 
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Figure 6.1  Observed values (circles) and linear regression model predictions (lines) for the relationship between 
elevation and abundance of four species measured on 11 sites. Variance explained by the regression model is 100%  
for Species 1 (P < 0.001),  90% for Species 2 (P < 0.001), 53% for Species 3 (P = 0.01) and 23% for Species 4 
(P = 0.14). In each case, visual investigation of the graphs indicated that the linear regression is a sensible model to 
use. If it were not (for example, the possible relationships were curved), then the values that were calculated for P 
would be wrong.

A regression model makes a clear differentiation 
between an explanatory variable and a response 
variable. You need to specify which variable is the 
response variable. Regression models considered 
here only have one response variable.

Using a simple method of 
analysing species data: linear 
regression
Regression analysis is a method by which the 
pattern in one response variable (or dependent 
variable) is modelled based on the patterns 
observed in one or several explanatory variables 
(or independent variables or predictor variables).

Imagine that we want to investigate the abundance 
of species Faramea occidentalis of the forest surveys 
conducted in Barro Colorado Island of Panama 
(Condit et al. 2000; Pyke et al. 2001). Table 6.1 
shows part of the data that were collected for the 
species. We used a subset of the 1-ha plots that 
belonged to larger sample plots (sites with coding B, 
C or S), since otherwise the larger plots would have 
dominated the dataset (see the discussion on mixed 
models in section: generalized mixed models). The 
observations on abundance are shown in the same 
table as the environmental matrix (Table 6.1). 
Typical for ecological surveys are the many zeros 
observed for the species abundance. Note the 
missing data for environmental variables for sites 
p40 and p41 – a good statistical program will 
remove these observations when fitting the model.
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Site Precipitation Elevation Age Age.cat Geology Faramea.occidentalis
B0 2530.0 120 3 c3 Tb 14
B49 2530.0 120 3 c3 Tb 7
p1 2993.2 20 2 c2 Tc 0
p2 3072.0 100 3 c3 Tc 0
p3 3007.4 180 1 c1 Tc 2
p4 2999.8 180 1 c1 Tc 1
p5 2414.3 40 2 c2 Tgo 0
p6 2393.7 30 2 c2 Tgo 0
p7 2438.4 60 1 c1 Tgo 2
p8 2455.5 50 3 c3 pT 0
p9 2889.3 410 3 c3 pT 0
p10 2529.3 90 3 c3 Tcm 9
p11 2515.5 60 3 c3 Tcm 7
p12 2496.8 10 2 c2 Tbo 1
p13 2576.3 55 2 c2 Tcm 2
p14 2534.7 60 3 c3 Tcm 5
p15 2455.0 70 3 c3 Tgo 0
p16 2501.8 160 3 c3 pT 3
p17 2470.6 120 3 c3 pT 0
p18 2510.8 58 2 c2 Tcm 3
p19 2687.7 160 1 c1 pT 0
p20 2657.5 160 1 c1 pT 0
p21 2411.4 110 1 c1 Tgo 12
p22 2513.7 180 1 c1 Tb 42
p23 2247.5 30 2 c2 Tc 15
p24 2279.8 50 2 c2 Tc 7
p25 2334.3 110 2 c2 pT 0
p26 2251.9 50 2 c2 pT 0
p27 2305.1 180 1 c1 Tl 4
p28 2293.7 160 1 c1 Tl 22
p29 1968.5 100 1 c1 Tb 8
p30 2096.3 180 1 c1 Tb 0
p31 3291.7 343 3 c3 pT 0
p32 3293.1 363 3 c3 pT 0
p33 3615.3 600 3 c3 pT 0
p34 3106.8 210 3 c3 pT 0
p35 4001.7 830 3 c3 pT 0
p36 3029.4 200 3 c3 pT 0
p37 3133.9 600 3 c3 pT 0
p38 2517.4 810 1 c1 pT 0
p39 2400.5 660 1 c1 pT 0
p40 NA NA NA NA NA 0
p41 NA NA NA NA NA 0
C1 1887.5 50 1 c1 pT 1
S0 3026.4 140 2 c2 Tc 0

Table 6.1  Values of environmental variables and the abundance of Faramea occidentalis for various forest plots in 
Panama (NA indicates missing data)
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Since we want to investigate a hypothesis about 
the relationship between precipitation and the 
abundance of Faramea occidentalis, it is good 
data practice to start with a graph that shows 
the observations. Figure 6.2 provides this graph. 
When you have a closer look at the graph, then 
you notice that sites with precipitation above 
3010 mm have none of the trees. Only two sites 
have some trees in between 2600 and 3000 mm.  
Below 2600 mm, some sites did not have the 
species, but many do. We can also spot some sites 
with abundances that are very high compared to 
the other abundances. The initial investigation of 
the graph shows that it is worthwhile to further 

Figure 6.2  Observed values 
(circles) of the abundance 
of Faramea occidentalis on 
precipitation.

investigate whether there is a linear relationship 
between precipitation and the species, since we 
could see a decreasing trend in abundance with 
increasing precipitation. The initial investigation 
also shows that a linear regression model will not 
explain all variance, as wherever a straight line 
is placed some observations would not be well 
predicted because of their scatter. Precipitation 
can therefore not be the only explanatory variable 
for differences in abundance.

A linear regression analysis with precipitation 
as the explanatory variable for differences in 
abundance provides the following results:

lm(formula = Faramea.occidentalis ~ Precipitation, data = faramea, 
    na.action = na.exclude)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.5606 -4.1558 -1.6295  0.8387 37.4855 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)  
(Intercept)   16.742059   7.328442   2.285   0.0276 *
Precipitation -0.004864   0.002738  -1.777   0.0830 .

Residual standard error: 7.57 on 41 degrees of freedom
Multiple R-Squared: 0.07149,   Adjusted R-squared: 0.04885 
F-statistic: 3.157 on 1 and 41 DF,  p-value: 0.08303

Analysis of Variance Table

Response: Faramea.occidentalis
              Df  Sum Sq Mean Sq F value  Pr(>F)  
Precipitation  1  180.91  180.91  3.1569 0.08303 .
Residuals     41 2349.51   57.31                  

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1
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What do these results mean? We will take you 
step-by-step through the output to indicate the 
interpretation.

The formula shows that in this model, the 
number of trees of Faramea occidentalis is the 
response variable (at the left of the ~) and 
precipitation is the explanatory variable (at the 
right of the ~).

This formula is R language for the model that 
we fitted. This model has the form of:

Faramea occidentalis = a + b × precipitation + deviation

In this model, the values for Faramea occidentalis 
and precipitation are the variables of Table 6.1, 
with observed values for each site, except p40 and 
p41.

The a and b parameters are the coefficients 
or parameters of the model. The software will 
estimate values for these coefficients. Another 
name for parameter a is the intercept and for b 
is the slope. Once you have the estimates of the 
coefficients, then you can calculate the predicted 
or expected value for each site, based on the 
explanatory variables. You can then calculate the 
predicted abundance of a + b × 2530 for site B0 
(since precipitation at B0 is 2530 mm), and a + 
b × 2993.2 for site p1 (since precipitation at p1 is 
2993.2 mm).

Imagine for instance that the model estimated 
that coefficient a = 1 and coefficient b = 
0.02. In this case, we expect an abundance of 
1 + 0.02 × 2530 = 51.6 for site B0 and an 
abundance of 1 + 0.02 × 2993.2 = 60.864 for 
site p1. In case the model calculated a = 0 and 
b = 0.01, then we expect 25.3 for site B0 and 
29.932 for site p1. 

The model will be estimated in a way that the 
predicted values will be as close as possible to the 
observed values. The residual is the difference 
between the observed and the predicted value. For 
the model that calculated an expected abundance 
of 51.6 for site B0, the residual is thus 14 – 51.6 
= –37.6. The model is estimated in a way that will 
minimize the sum of the squared residuals.

Next in the output after the model, the distribution 
of residuals is provided. The information gives the 
minimum, maximum and first and third quartile 
of the residuals (check chapter 2 how these statistics 
are calculated). These values allow getting a quick 
view of the quality of the model. The smaller the 
residuals are, the better the quality of the model. 
We can especially notice the large maximum 
value of 37.4855. Checking how residuals are 
distributed for a good model is discussed in further 
detail below (section: checking the residuals of the 
linear model).

Next in the output, we get the estimated values 
of the coefficients. The model estimated values 
of 16.742059 for coefficient a and –0.004864 
for coefficient b. These coefficients allow you to 
calculate the predicted abundance. For site B0, 
this means that the predicted abundance equals 
16.742059 – 0.004864 × 2530 = 4.43, and the 
residual equals 14 – 4.43 = 9.57.

The standard errors describe the precision with 
which parameters are estimated. The t values and 
probability values were calculated to test whether 
the coefficients could be equal to 0. 

The test for the coefficient for precipitation, b, 
is built on the idea that behind the sample data is a 
relationship between abundance and rainfall, that 
we could find exactly if we took a large enough 
sample of sites. The test examines the hypothesis 
that the underlying value of b in this hypothetical 
model is zero. The low (but not small) value of 
P = 0.083 can be interpreted as providing some, 
but not strong, evidence that the regression 
coefficient is not zero.

Statistical significance tests such as this t-test are 
widely used and useful in analysis of experimental 
and observational data. However they are also 
often misunderstood and hence misused. All 
statistical tests depend on assumptions about the 
data (even so-called ‘non-parametric’ tests) which 
can be phrased as a model. In most cases the model 
describes some pattern, relationship or differences 
which are of interest. Many of the tests carried out 
examine whether the data support the notion of 
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a relationship, or whether the data are consistent 
with a simpler (‘null’) model in which there are 
no differences or relationships.  The tests look at 
how ‘likely’ the observed data are if the underlying 
null model describes the real world. If the data 
are likely to occur even in the absence of the 
hypothesized relationship, they do not support the 
hypothesis. If, on the other hand, they are unlikely 
to occur if the null model is true, this is taken as 
evidence that the null model does not reflect the 
real world, and some relationship or differences 
exist. The significance level (P) is the measure 
of ‘how likely’. A low significance level, close to 
zero, is interpreted as the data not supporting 
the null hypothesis. A larger significance level is 
interpreted as no evidence in the data against the 
null hypothesis.

Three common problems with using statistical 
significance tests are:
1. Not realizing that the tests' results depend entirely 

on the statistical models behind the tests being 
realistic and suitable for the data. It is therefore 
necessary to understand what these models are 
and how to check if they are appropriate.

2. Not understanding that the significance level 
P provides a measure of ‘strength of evidence’. 
There is no cut-off value above which we can 
say ‘not significant’, even though, for historical 
reasons, the value of P=0.05 is still sometimes 
treated that way.

3. Neither the null or alternative models are 
demonstrated to be ‘true’ by the results of a test. 
As a simple example, a test may compare diversity 
in two land uses. If there is ‘no significant 
difference’ it does NOT mean that diversity 
does not differ between land uses. It means your 
data have not been sufficient to demonstrate a 
difference. This might be because there is no 
difference, or it might be because your data are 
not adequate for detecting the differences which 
are there. 
Regarding the last point, there are methods 

available to help decide if you have sufficient data 

to detect the sort of effects you are interested in. 
A ‘power analysis’ can be carried out, or effects 
estimated together with a confidence interval. Ask 
a biometrician for help!

The multiple R-squared value gives the fraction 
of variance that is explained by the model. If this 
fraction is close to 1, then the model explains 
almost all of the variance. This means that the 
residuals will be very small, and the predicted 
and observed values will be close together. The 
multiple R-squared is thus an expression of the 
goodness-of-fit or quality of the model (under 
the assumption that the measured values were 
realistic). For this model, the value of R-squared 
= 0.071 (or 7.1%) means that the model only 
explains a small fraction of the total variance.

The adjusted R-squared value adjusts the 
multiple R-squared value to the degrees of 
freedom of the regression model. The purpose of 
the correction is to enable comparisons between 
regressions with different datasets, but some 
researchers have found out that the statistic is not 
very good at doing that. We are also of the opinion 
that the adjusted R-squared value provides little 
extra information than provided by the multiple 
R-squared value and the results of the F-test 
(discussed in the next paragraph). 

The F statistic tests whether there is no evidence 
that the model explains some of the variance. 
You could notice also that the significance level 
(P = 0.08) is the same as for the coefficient of 
precipitation given earlier. This is to be expected 
since the model had only one explanatory 
variable.

Finally, an analysis of variance or ANOVA table 
is given. Analysis of variance and generalizations of 
it, are widely used in assessing and understanding 
statistical models. They are basic statistical tools 
which you will need to become familiar with and 
perhaps refer to a more detailed text. Dalgaard 
(2002) contains a simple description of the ideas 
and the tools within R software. Analysis of 
variance arises from thinking of statistical analysis 
and modelling as trying to explain variation in the 
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response variable. If there was no variation (all the 
values of the response equal) there is no analysis 
to do. If the response is related to an explanatory 
variable, x, then variation in x will lead to variation 
in the response. Hence a relationship may ‘explain’ 
some of the variation. If the explanatory variable 
is a category or grouping variable, it explains 
variation in the response if the values of the 
response within a group tend to be more similar 
than those in different groups. 

The ANOVA table splits up the total variance in 
the response into components that are explained 
by each explanatory variable and a residual. This is 
calculated through sums-of-squares that are then 
divided by the degrees of freedom, resulting in a 
mean square. Mean squares are actually variances, 
since this is the way by which variance is calculated. 
ANOVA tables give important information on 
the magnitudes of variance explained by the 
explanatory variables. The magnitude of variance is 
an expression of the importance of the explanatory 
variable in explaining the linear pattern of the 
response variable. 

The significance level values provided by the 
ANOVA table also relate to tests about the 
parameters of an underlying model being zero. 
We can see once again that this significance level 
is the same as the significance level calculated by 
earlier tests (P = 0.08), indicating some, but not 
strong, evidence that precipitation contributes to 
explaining abundance.

The results of the model can also be analysed in 
a graphical way. Since the linear regression model 
fits a straight line that attempts to get as close as 
possible to the observed values, we can compare 
the predictions with the actual observations. 
Figure 6.3 shows this comparison. The dashed 
lines added to Figure 6.3 show where we are 95% 
certain that the regression line is. The dotted 
line of Figure 6.3 corresponds to the area where 
we expect that 95% of the new observations will 
be (actually where we expect where the first new 
observation will be 95% of cases, conditional on 
the value of precipitation for this observation). 
These lines are constructed from the probability 
distribution functions that are assumed to have 
generated the data.

Figure 6.3  Observed values (circles) and predicted values (connected by line) for the linear regression model of 
the abundance of Faramea occidentalis on precipitation. The dashed lines show the 95% confidence interval for the 
mean, the dotted line the upper 95% prediction interval for new observations.
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Checking the residuals of the 
linear model
Some of the plots that you can request from a 
decent statistical package are diagnostic plots. 
These plots help you in evaluating whether some 
of the assumptions behind the regression analysis 
are realistic, and hence whether it is safe to accept 
the results of regression model or not.

What could be the problem? The problem is that 
a linear regression analysis, like any other statistical 
analysis method, makes several assumptions 
about the data to arrive at its results. The most 
important assumptions are that the effects from 
various explanatory variables are additive and that 
there are linear relationships between explanatory 
variables and response variables – in essence that 
the formula of the regression model makes sense. 
Second-order assumptions are that the observations 
are independent and that the variance of the 

residuals is constant. A third-order assumption is 
that the residuals are normally distributed.

A regression analysis can be seen as a model that 
determines how much pattern can be filtered from 
a dataset. This concept can be described as:

Data = pattern + residuals

The residuals are the part of the data that were 
not modelled. Simple regression analysis makes 
the assumption that no systematic patterns can 
be observed in the residuals. If the residuals show 
some patterns, then the model has not explained 
all the predictable variance.

Since residuals should not show patterns, some 
diagnostic plots therefore investigate patterns in 
the residuals. One method is to plot the residuals 
against the predicted values as shown in Figure 6.4 
in the two plots on the left-hand side. You can see 
that the spread of residuals increases with increasing 
levels of the predicted value. The assumption of 

Figure 6.4  Diagnostic plots for a linear regression model.
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constant variance is not very realistic. As seen in 
chapter 2 (Figure 2.3), a variable that is normally 
distributed will result in a straight line in a Q-Q 
plot. This provides another method for checking 
the residuals, since residuals are expected to be 
normally distributed. The Q-Q plot that is shown 
on the upper right-hand side shows that residuals 
are not normally distributed.

The Cook’s distance graph (lower-right) shows 
observations that have an important influence 
on the results. If site p22 was removed from the 
dataset, then different results would be obtained. 
How such observations can be handled is discussed 
in further detail at the end of this chapter.

The model assumes the residuals are just 
random, unpredictable deviations. Biodiversity 
data are collected in space, so an obvious pattern 
to look for is coherent geographical variation not 
accounted for by the environmental variables in 
the model. This can be investigated graphically 
by using the spatial location of the sample plot as 
the plotting positions. There should not be any 
spatial pattern that you can observe, for instance 
having negative residuals in the north and positive 
residuals in the south, or patches of high and low 
residuals. This is important to check since the 

model assumes that all patterns in abundance can 
be explained by precipitation.

One method of investigating spatial patterns 
in the residuals is to directly plot the residuals 
using the spatial coordinates of each sample plot 
(Figure 6.5a). A more sophisticated method of 
investigating the spatial distribution of residuals 
is to construct a trend-surface that models the 
changes in the residuals over the spatial coordinates. 
The trend-surface will model the changes in the 
response variable (the residuals) as a landscape 
with hills and valleys for higher and lower values 
of the variable, respectively (Figure 6.5b). The 
trend-surface model makes it easier to spot any 
trends in the residuals.

The output shows that there is a noticeable 
trend in the residuals: the residuals decrease from 
an area in the centre to areas in the north and 
south. If some explanatory variables other than 
precipitation show the same trend, then these 
could be important explanatory variables to add to 
the regression model to further explain the variance 
in abundance. On the other hand, we may have a 
patch of the species which can not be explained 
by forcing variables. Ecological models can show 
that patchy distributions can arise simply from the 

Figure 6.5 (a)  Spatial distribution of residuals of the 
linear regression model of the abundance of Faramea 
occidentalis on precipitation: sign (positive = circle, 
negative = square) and size (size of circle or square) of 
residuals at a particular spatial location (+); 

Figure 6.5 (b)  Second-order polynomial trend surface 
for the residuals.
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natural dynamics of the species and do not have to 
be driven by environmental variables.

When patterns in the residuals show that the 
assumptions of the model are unreasonable (as 
seen above), then we should look for better 
models (such as those listed later in this chapter). 
It is very important that the assumptions of 
the model apply when you want to make any 
conclusions from the results of the model.

Linear regression with a 
categorical explanatory variable
Imagine that you did not want to investigate 
the influence of altitude on abundance, but the 
influence of geology on abundance. The dataset 
includes a categorical variable (“geology”) that 
classifies sites according to various categories of rock 
types (see Chapter 2). You can construct a model in 
a similar way as done above, and you would obtain 
the following results:

lm(formula = Faramea.occidentalis ~ Geology, data = char, na.action = na.exclude)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.2222     1.5552   0.143 0.887172    
GeologyTb    13.9778     3.3355   4.191 0.000172 ***
GeologyTbo    0.7778     6.7788   0.115 0.909292    
GeologyTc     3.3492     2.9390   1.140 0.261989    
GeologyTcm    4.9778     3.3355   1.492 0.144313    
GeologyTgo    2.5778     3.3355   0.773 0.444663    
GeologyTl    12.7778     4.9179   2.598 0.013494 *  

Residual standard error: 6.598 on 36 degrees of freedom
Multiple R-Squared: 0.3806,   Adjusted R-squared: 0.2774 
F-statistic: 3.688 on 6 and 36 DF,  p-value: 0.005868 

Analysis of Variance Table

Response: Faramea.occidentalis
          Df  Sum Sq Mean Sq F value   Pr(>F)   
Geology    6  963.19  160.53  3.6875 0.005868 **
Residuals 36 1567.23   43.53                    

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

These results are similar as the results shown earlier 
for the continuous variable. What is different now 
is that the model includes a categorical explanatory 
variable.  A coefficient is estimated for each level 
of the categorical variable.

The regression coefficient for the most common 
category of geology (pT) is fixed to be zero. You 
could choose to fix the coefficient for another 
category to zero, but always one coefficient needs 
to be zero. Since the regression coefficient is zero, 
it is not provided in the output. It is taken as a 
reference level against which others are compared. 

Imagine that you had a simple dataset with 
three observations on tree abundance, one for 
each level of the categorical variable Landuse. 
You fit the following model: Abundance = a + b 
× landuse1indicator + c × landuse2indicator + 
d × landuse3indicator + deviation. The landuse 
indicators are variables that have values 1 or 0. 
When a site has landuse1, then landuse1indicator 
= 1, landuse2indicator = 0 and landuse3indicator 
= 0 for this site. If you observed 6, 7 and 8 trees 
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for landuse1, landuse2 and landuse3 respectively, 
then a perfect fit would be provided by estimating 
a=5, b=1, c=2 and d=3. However, another perfect 
fit would be provided by estimating a=4, b=2, c=3 
and d=4. From the infinite number of possible 
combinations, combination a=6, b=0, c=1 and 
d=2 is selected by setting b=0. 

The same choice was made in the regression 
model by opting that the regression coefficient 
of pT was fixed to be zero. For our example, we 
thus predict an abundance of 0.2222 + 0 = 0.2222 
for category pT and an abundance of 0.2222 + 
13.9778 = 14.20 for category Tb. 

The interpretation of the results is analogous 
to the interpretation of regression model with a 
quantitative explanatory variable. For example, 
there is evidence that sites with geology Tb contain 
more of the species than sites of geology pT since 
a low significance level was estimated (P < 0.001). 
There is no evidence that sites of geology Tbo 

contain more trees than sites of geology pT since a 
high significance level was estimated (P = 0.909).

The multiple R-squared value shows that the 
model explains 38% (0.3806) of variance. The 
significance level of the F-test indicates that the 
model provides evidence for a linear relationship 
between geology and abundance (P = 0.0058). 
The ANOVA table provides the same information 
since we only had one explanatory variable.

The graphical presentation of the model is 
given in Figure 6.6. The observed values are 
presented as circles, the predicted values for each 
category of geology by the full lines. You could 
check that the predicted values correspond to 
those calculated earlier based on the regression 
coefficients. In this simple case they are actually 
just the means for each category. The dashed 
and dotted thick lines show where we are 95% 
certain that the average and next value for each 
category will be.

Figure 6.6  Observed values (circles) and predicted values (full line) for the linear regression model of the 
abundance of Faramea occidentalis on geology. The dashed lines show the 95% confidence interval for the mean, 
the dotted lines the 95% prediction interval for new observations.
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Using generalized models when 
the residuals of a linear regression 
are not normally distributed: 
the Poisson, quasi-Poisson and 
negative binomial models
Generalized linear models (GLM) were invented 
to deal with situation where observations are not 
normally distributed or where other aspects of 
the linear regression model are not appropriate. 
They fit a wider, more general class of models 
that can cope with other situations. In the case of 
counts data, you know that values should never 
be negative, but a simple linear regression model  
provides no guarantee that you would obtain 
such results. For instance, in Figure 6.3 you can 
see that the model predicts negative abundances 
when precipitation is larger than 3500 mm. This 
is not a realistic result, as we know that abundance 
can not be negative. By choosing the appropriate 
GLM, you will only obtain realistic values. 

There are many types of GLM that can be 
constructed. A GLM is characterized by two 
functions. One function (the link function) 
describes how the mean of the response variable 
depends on the linear predictors (the explanatory 
variables). The second function (the variance 
function) captures how the variance of the 
response variable depends on the mean. The same 
information is usually provided by the following 
formulae (µ: mean of the response variable y; x: 
explanatory variable; a, b: regression coefficients; 
var: variance; : dispersion parameter):

Link function: g(µ) = a + b1 ×  x1 +  b2  ×  x2  +  b3  ×  x3 + …

Variance function: var(y) =  × V(µ)

The types of GLM that are shown here use 
the log link and the Poisson, quasi-Poisson and 
negative binomial variance functions. These are 
types of GLM that are sometimes appropriate for 
counts data.

The Poisson GLM (with log link) is the 

As with a continuous variable, we should proceed 
with checking diagnostic plots for the patterns in 
the residuals. In this manual, the diagnostic plots 
will only be given for the first regression analysis in 
order to save some space, however. Remember to 
always check the diagnostic plots for a regression 
analysis.

Transforming the response 
variable when the residuals are  
not normally distributed
One way of overcoming the problem with the 
increasing variance of residuals for larger values of 
the response variables is to transform the response 
variable. Some common transformations used 
with count data are the logarithmic transformation 
and the square-root transformation. These 
transformations are not tricks that hide the actual 
patterns, but are useful tools to reveal patterns.

The major disadvantage of using transformations 
is that you are not modelling the patterns of the 
observations that you made, but patterns of the 
transformed observations. When you interpret 
your results, you are actually interpreting the 
transformed observations. In some cases, you may 
not feel comfortable in interpreting transformed 
observations. In other cases, such interpretation 
can seem logical. For instance, the pH scale to 
measure acidity is actually a logarithmic scale.

Note that the log transformation can not be used 
if the response variable includes zeros. Log(0) is 
not defined. A practical solution in such cases is to 
calculate the transformed value of n as log(n+1) or 
log(n+0.1) instead of log(n). The results depend on 
what is added, introducing a certain arbitrariness 
to the analysis.

Because of the problems with transformations, 
we advise to use more modern approaches to 
data analysis such as the GLM methods that are 
introduced immediately below.
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simplest GLM model to use. It uses a logarithmic 
link function (log(µ)) and a Poisson variance (var(y) 
= µ).

When you use this type of GLM on the Faramea 
occidentalis abundance data used earlier, then you 
obtain the results shown below.

The results are similar to those from a linear 
regression, but with some important differences. 

When we look at the output, then we first 
get the model. The difference with the linear 
regression is that the variance and link functions 
are mentioned.

The coefficients that are provided next are the 
coefficients that were calculated for the model. 
You can use these coefficients again to calculate 
the expected abundance of Faramea occidentalis 
at a given precipitation. The coefficients predict 
the logarithm of the abundance, however, 
since a log link was used. Thus, to know the 
expected abundance, you need to take the anti-
logarithm. For site B0 with precipitation of 
2530 mm, the predicted abundance thus equals  

exp(5.6668474 – 0.0017098 × 2530) = 3.82.
The output continues with mentioning that the 
dispersion parameter was taken to be 1, which 
means that the model assumed that var(y) = µ. 
This is one of the assumptions that the Poisson 
model makes. This is what would be expected if 
the individuals were randomly located in space. 
When individuals are clumped, the dispersion 
parameter will be larger than 1 (var(y) =  × µ 
with  > 1). When individuals are more regularly 
distributed than random, the dispersion parameter 
will be smaller than 1.

The null and residual deviances are similar 
to the total variance and residual variance of a 
simple linear model. If the difference between 
them is large, the model will explain much of 
the variance (deviance). If the difference is small, 
then the model is not very effective in explaining 
the response variable. In our case, the model only 
explains ((414.81 – 357.67) / 414.81) or 13.7% 
of total deviance. We can thus use the null and 
residual deviance to calculate a parameter that can 

glm(formula = Faramea.occidentalis ~ Precipitation, family = poisson(link = log), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-4.0071  -2.6373  -1.4418  -0.1339  11.0835  

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)    5.6668474  0.6047651   9.370  < 2e-16 ***
Precipitation -0.0017098  0.0002478  -6.901 5.18e-12 ***

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 414.81  on 42  degrees of freedom
Residual deviance: 357.67  on 41  degrees of freedom
AIC: 431.55

Analysis of Deviance Table

              Df Deviance Resid. Df Resid. Dev      F    Pr(>F)    
NULL                             42     414.81                     
Precipitation  1    57.14        41     357.67 57.142 4.054e-14 ***

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1
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be interpreted in the same way as the multiple-R-
squared value of a simple linear regression.

The ANOVA table also does not mention 
‘variances’ but reports ‘deviances’ instead. The 
similar name already indicates that deviances can 
be interpreted in the same way as the variances of a 
GLM. Although the model is not very efficient in 
explaining the abundance of Faramea occidentalis, 
there is evidence that precipitation explains 
some of the deviance since the F-test has a small 
significance level (P < 0.001). Note that evidence 
for explaining some of the deviance does not mean 
that much deviance is explained. It is therefore 
necessary to check for both the significance level (to 
judge whether there is an effect) and the deviance 
explained (to judge how important the effect is). 
You could check that the deviance explained by 
precipitation and the residual deviance sum up to 
the null deviance.

The graphical representation of the model is 
provided in Figure 6.7. You can see once more 

Figure 6.7  Observed values (circles) and predicted values (connected by line) for the Poisson GLM with log link of 
the abundance of Faramea occidentalis on precipitation.

that there is big difference between the actual 
abundances and the modelled abundances, or large 
residual deviance.

You could verify that the Poisson model will 
never predict negative values. You can see that 
predictions for elevations above 3500 mm are still 
positive, contrary to the simple linear model that 
we saw before. This is a good feature of such model 
for count data, such as abundances of species. 
Therefore, if you know that your data are counts, 
it is often better to use a suitable GLM rather than 
a linear model.

A quasi-Poisson GLM is very similar to a Poisson 
model (as the name suggests), but uses a different 
variance function. This model is better when the 
dispersion is not close to 1, an assumption that is 
used by the Poisson model (see above). The quasi-
Poisson makes the assumption that dispersion is not 
1 and fits a dispersion parameter to the dataset.

When you fit a quasi-Poisson GLM (with log 
link) to our data, then you obtain the result shown 
on the next page.
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glm(formula = Faramea.occidentalis ~ Precipitation, family = quasipoisson(link = log), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-4.0071  -2.6373  -1.4418  -0.1339  11.0835  

Coefficients:
                Estimate Std. Error t value Pr(>|t|)  
(Intercept)    5.6668474  2.2452852   2.524   0.0156 *
Precipitation -0.0017098  0.0009199  -1.859   0.0703 .

(Dispersion parameter for quasipoisson family taken to be 13.78382)

    Null deviance: 414.81  on 42  degrees of freedom
Residual deviance: 357.67  on 41  degrees of freedom
AIC: NA

Analysis of Deviance Table

              Df Deviance Resid. Df Resid. Dev      F  Pr(>F)  
NULL                             42     414.81                 
Precipitation  1    57.14        41     357.67 4.1456 0.04824 *

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

When you compare the output of the quasi-
Poisson with the output of the Poisson model, 
then you can see that the regression coefficients 
and the deviance are the same. What is different 
are the standard errors and significant levels of 
the tests. For the Poisson model, the significance 
level for the coefficient for precipitation is small 
(P < 0.001), whereas for the quasi-Poisson model 
it is larger (P = 0.07) and indicates some, but not 
strong evidence for an effect. By not assuming that 
the dispersion parameter was 1 as in the Poisson 
model, we thus reach different conclusions that 
there is only some (not strong!) evidence for an 
effect of precipitation on abundance. Since the 
dispersion parameter was estimated to be 13.78, 
there is an indication that the individuals are 
not randomly distributed, but are clumped. The 
analysis of the residuals (Figure 6.4) also indicated 
that individuals could be clumped. In such 
situations, it is more appropriate to use the quasi-
Poisson than the Poisson model. Since the results 
of a model will depend on the assumptions that 
the model makes, you should try to ensure that 

the assumptions are realistic. When the model 
makes unrealistic assumptions, you will not be 
able to reach reliable conclusions.

Notice that the significance levels for the effect 
of precipitation are not quite the same for the t-
test for the regression coefficient (P = 0.07) and 
the F-test of the ANOVA table (P = 0.048). They 
are based on different approximations. However, 
qualitatively they are the same: both suggest 
evidence for precipitation having an effect. Do 
not use P = 0.05 as a cut-off between significant 
and non-significant results, but use P as a scale for 
measuring evidence. In this case both probabilities 
suggest some but not strong evidence against 
the null hypothesis of no precipitation effect. 
However both results depend on the model being 
appropriate, and a look at observed and predicted 
values, or the residuals, shows that this may be 
doubtful.

The graphical representation of the model is 
provided in Figure 6.8. When you compare this 
figure with Figure 6.7, then you will see that 
the only features that are different are the wider 
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confidence intervals (dashed lines) in Figure 6.8, 
reflecting the large estimated dispersion parameter, 
compared with the inappropriately fixed value of 
1 in Figure 6.7. 

The negative binomial GLM is another model 
that can be used for situations where dispersion is 
higher than 1, or where individuals are clumped 
and not randomly distributed. Since organisms 
often show a clumped distribution, this model will 
often be suitable for ecological research. Whereas 
the quasi-Poisson model does not correspond 
to a known statistical distribution, the negative 
binomial model is one of several statistical models 
that model clumping. The negative binomial 
model is a model with one parameter more than 
the Poisson model, the parameter theta or k. 
This parameter models the clumping in the data, 
ranging from zero to infinity. Values of theta close 
to zero indicate clumping, whereas larger values 
indicate distribution that is more random. An 
infinite value of theta gives a Poisson distribution 
with dispersion equal to one.

When you fit a negative binomial GLM (with log 
link) to the same data that we used before, then you 

Figure 6.8  Observed values (circles) and predicted values (connected by line) for the quasi-Poisson GLM with log 
link of the abundance of Faramea occidentalis on precipitation.

will obtain the result shown on the next page.
You can see that the output is similar to the 

outputs of the Poisson and quasi-Poisson models. 
The model coefficients are different for the negative 
binomial GLM, however. As for the Poisson model, 
there is evidence that precipitation has an effect 
on abundance since a small significance level is 
calculated for the coefficient for precipitation and 
in the ANOVA table (P < 0.001). By modelling 
clumping directly rather than by a second-order 
assumption as in the quasi-Poisson GLM, we thus 
obtain a different result.

We can see that a small value was estimated for 
theta (0.3057), since it can theoretically range 
from zero to infinity. This provides evidence that 
individuals are clumped.

Figure 6.9 provides the graphical presentation 
of the results of the negative binomial model (with 
log link). You can see that the model predicts very 
large abundance at lower precipitation levels. 
Since the observed abundances at the lowest 
precipitation levels are not the highest, we should 
be sceptical about these results – remember that 
the residuals should not show any patterns.
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glm.nb(formula = Faramea.occidentalis ~ Precipitation, data = faramea, 
    na.action = na.exclude, maxit = 5000, init.theta = 1, link = log)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-1.59806  -1.19031  -0.58758   0.03517   2.12815  

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)   11.2726451  2.4981876   4.512 6.41e-06 ***
Precipitation -0.0039579  0.0009817  -4.032 5.54e-05 ***

(Dispersion parameter for Negative Binomial(0.3057) family taken to be 1)

    Null deviance: 47.240  on 42  degrees of freedom
Residual deviance: 36.357  on 41  degrees of freedom
AIC: 178.21

              Theta:  0.3057 
          Std. Err.:  0.0915 

Analysis of Deviance Table

              Df Deviance Resid. Df Resid. Dev      F    Pr(>F)    
NULL                             42     47.240                     
Precipitation  1   10.883        41     36.357 10.883 0.0009706 ***

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

Figure 6.9  Observed values (circles) and predicted values (connected by line) for the negative binomial GLM with 
log link of the abundance of Faramea occidentalis on precipitation.
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Using generalized additive models

Generalized additive models (GAM) are more 
general than GLM. They are based on smoothing 
– they fit a model that can follow the pattern in 
the data more closely. Because of this smoothing, 
the relationships with the explanatory variables 
are not linear any longer. A smoothing function 
is a line that flows more freely between the 
observations than a straight line. Returning to 
the symbolic description of the assumptions 
that we used for a GLM, the variance function 
remains the same, but the explanatory variables 
part of the model changes into:

Link function: g(µ) = a + b1 × x1 + b2 × x2 + s1(x3) 
+ s2(x4)  +…

The functions s1 and s2 are smooth functions of 
x that are defined in a way which allows a lot of 
flexibility in the curve. 

We fit a negative binomial GAM  (with log link) 
again to the count data of Faramea occidentalis 
using precipitation as an explanatory variable, 
which produces the result shown below.

You may notice that no coefficient is provided for 
precipitation. The output provides a significance 
test for precipitation, however, using another 

Family: Negative Binomial(0.4417) 

Link function: log 

Formula:
Faramea.occidentalis ~ s(Precipitation)

Parametric coefficients:
              Estimate  std. err.    t ratio    Pr(>|t|)
(Intercept)    0.55676     0.3582      1.554    0.12797

Approximate significance of smooth terms:
                        edf       chi.sq     p-value
s(Precipitation)      1.959       14.393     0.0020351

R-sq.(adj) =  0.0461   Deviance explained = 31.1%
GCV score = 1.1264   Scale est. = 1.0489    n = 43

type of test (with P = 0.002). This means that 
precipitation plays a significant role in explaining 
abundance, and should be left in the model. The 
edf indicates the estimated degrees of freedom of 
the smoothing function – these degrees of freedom 
are similar to the order of the polynomial model 
(see what a polynomial model is in section: using 
several explanatory variables at the same time).

Figure 6.10 provides the graphical 
representation of the model. You can see that 
the model now predicts the highest abundance 
at low precipitation with a gradual decrease 
in abundance until a precipitation of around 
3250 mm, followed by precipitation levels where 
no abundance is expected. You can see that the 
fitted line is no longer straight, but is more 
flexible in following the data. If such smooth 
patterns exist in your data, but you can not find 
a simple mathematical model to describe them, 
a smoothing curve may be appropriate. The 
figure hints that abundance could be lower for 
precipitation levels beyond the lower limit of the 
precipitation that was recorded, since the optimal 
abundance is predicted around 2100 mm. Since 
it is dangerous to extrapolate, the best way for 
testing this would be to add some sites that were 
sampled at lower precipitation levels.
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Using several explanatory 
variables at the same time

In the previous models, we only used one explanatory 
variable for each model. We can use several 
explanatory variables at the same time, however. 
Such regression is called a multiple regression. You 
can construct models that use several (or all) of the 
explanatory variables that you have – an example is 
provided later in this chapter.

You can also construct models that use new 
explanatory variables that were derived from 
existing explanatory variables. The first example 
of multiple regression is of the second category. 
The explanatory variables that will be used are 
the precipitation and precipitation squared. 
Precipition2 is easily calculated by squaring each 
value of precipitation – for site B0 the value for 
precipitation2 = 25302 = 2530 × 2530 = 6400900. 
When you add square or higher order powers of 

Figure 6.10  Observed values (circles) and predicted values (connected by line) for the negative binomial GAM (with 
log link) of the abundance of Faramea occidentalis on precipitation.

existing variables, then you are fitting a polynomial 
model. A second-order polynomial model includes 
powers of original variable until the second order, 
a fourth-order polynomial model includes powers 
of the original variable until the fourth order 
(thus variable, variable2, variable3 and variable4). 
If we are investigating the relationship between 
precipitation and abundance with a second-order 
polynomial model, we fit the coefficients a, b and 
c of the polynomial model: Abundance = a + b × 
precipitation + c × precipitation2 + deviation. 

By constructing a polynomial model, you can 
fit curved lines. Using polynomial models thus 
provides an alternative approach to fitting curved 
relationships than the smoothing approach shown 
earlier. 

A negative binomial GLM (with log link) of 
the abundance of Faramea occidentalis using the 
second-order polynomial of precipitation gives the 
result shown on the next page.
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glm.nb(formula = Faramea.occidentalis ~ Precipitation + I(Precipitation^2), 
    data = faramea, na.action = na.exclude, maxit = 5000, init.theta = 1, link = log)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-1.47623  -1.27733  -0.40550   0.08838   1.82770  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)  
(Intercept)        -3.124e+01  1.708e+01  -1.829   0.0674 .
Precipitation       2.872e-02  1.346e-02   2.133   0.0329 *
I(Precipitation^2) -6.214e-06  2.642e-06  -2.352   0.0187 *

(Dispersion parameter for Negative Binomial(0.364) family taken to be 1)

    Null deviance: 53.418  on 42  degrees of freedom
Residual deviance: 36.043  on 40  degrees of freedom
AIC: 175.51

              Theta:  0.364 
          Std. Err.:  0.114 

Analysis of Deviance Table

Model 1: Faramea.occidentalis ~ 1
Model 2: Faramea.occidentalis ~ Precipitation + I(Precipitation^2)
  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)    
1        42     53.418                                 
2        40     36.043  2   17.376 8.6878 0.0001686 ***

Terms added sequentially (first to last)

                   Df Deviance Resid. Df Resid. Dev       F    Pr(>F)    
NULL                                  42     53.418                      
Precipitation       1   12.336        41     41.083 12.3359 0.0004443 ***
I(Precipitation^2)  1    5.040        40     36.043  5.0397 0.0247732 *  

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

When you compare the output to previous 
outputs, then you could notice that the results 
are very similar to those of the other GLMs. The 
difference is that two coefficients are provided for 
precipitation and precipitation2, and also two rows 
are provided in the ANOVA table. Precipitation2 
is mentioned as I(Precipitation^2). The 
reason is that otherwise the model would calculate 
the sum of (precipitation + precipitation2) and 
treat this sum as a single explanatory variable – it 
is just a particularity of the statistical software 
that we used (I() is a function that isolates the 
variable). There is evidence that both precipitation 
and precipitation2 explain the abundance, since 
significance level values are low for both variables 
(for example P = 0.018 for precipitation2). 

Therefore both explanatory variables can be left 
in the model.

The ANOVA table provides similar evidence 
that both precipitation and precipitation2 explain 
the abundance, since the estimated probabilities 
are small (P < 0.05). As there are two variables, the 
ANOVA table splits the total of the deviance that is 
explained by the model (explained deviance = null 
deviance – residual deviance = 53.418 – 36.043 
= 17.375) into the deviance that is explained by 
precipitation (12.336) and the additional deviance 
that is explained by precipitation2 (5.040). You 
could easily check that the sum of both deviances 
adds up to the total deviance that is explained.

Note that the ANOVA table indicates that the 
variables were added sequentially. This means 



ANALYSIS OF COUNTS OF TREES     91  

that first the deviance that was explained by 
precipitation was calculated. After calculating that 
deviance, the additional deviance that is explained 
by precipitation2 is calculated. If you would change 
the order, then you would obtain different values 
for deviance. The reason that the sequence will 
alter the results is that there is correlation between 
the variables (or the variables are not orthogonal). 
Because of the correlation, some of the deviance 
that would be explained by a variable will be 
explained by a variable that was added into the 
model earlier – once some deviance was explained, 
it can not be explained again. For a polynomial 
model, it makes sense to order variables in order 
of increasing power as shown in the example, and 
not to add precipitation2 before precipitation.

The ANOVA table also listed a comparison 
between the null model and the model with both 
variables. This is the GLM alternative to the F-test 
of a simple linear regression, and it also calculates 
the significance of the complete model. 

Figure 6.11 shows the graphical representation 
of the model. When you compare this figure 

with Figure 6.10, then you will notice that a 
similar shape of curve is obtained for the expected 
values. In this case, however, a clear optimum 
in predicted abundance can be seen that occurs 
around a precipitation of 2300 mm. At lower or 
higher precipitation levels, a lower abundance is 
predicted. The reason for this pattern is that a 
second-order polynomial model in combination 
with a log scale will fit a unimodal distribution (at 
a linear scale, second-order polynomial models are 
rarely useful as they fit a parabola). Many species 
have unimodal distributions, since there is only a 
certain range of conditions under which the species 
occur. Such window where the species occurs can 
be caused by environmental conditions that are too 
harsh (too hot, too cold, too dry, too few nutrients, 
…), or by competition with species that are better 
adapted to some types of conditions. Since species 
often have unimodal distributions, a second-order 
polynomial model will often be the model that 
will best describe the actual distribution of species 
abundances. In such situations, the assumption 
of a unimodel distribution will be appropriate. 

Figure 6.11  Observed values (circles) and predicted values (connected by line) for the negative binomial GLM of the 
abundance of Faramea occidentalis on the second-order polynomial of precipitation.
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Note however that the second order polynomial 
will always give a symmetrical unimodal response. 
The fact that the fitted response is of that shape 
is determined by the model type. Whether it fits 
your data well still needs examining.

In multiple regression models, the explanatory 
variables that are used do not have to be 
polynomials of the same variable. The result 
shown on the next page was obtained by using 
the categorical variables age and geology, and the 
second-order polynomials for the quantitative 
variables precipitation and elevation to explain 
abundance with a negative binomial GLM with 
log link.

Note first that although it is technically possible 
to construct models that include many different 
explanatory variables, that models should 
correspond to hypotheses about the influence of 
an explanatory variable on the response variable. 
The choice of explanatory variables that are 
measured in the first place should be based on 
such hypotheses, which should be realistic or 
plausible relationships that reflect what we know 
of ecology.

We analysed age as if it was a categorical variable. 
Since age is an ordinal variable, we could also have 
analysed it as if it was a quantitative variable (see 
Chapter 2). We analysed age as a categorical variable 
since an analysis with age as a quantitative variable 
indicated that there was no evidence that age had 
an effect (see how to interprete ANOVA tables 
lower in this section and check for yourself with a 
model where age is a quantitative variable). 

As we saw in the outputs of other models, the 
formula and the distribution of residuals is provided 
first, followed by the regression coefficients.

Again we can see one regression coefficient 
for the continuous variables (precipitation, 
precipitation2, elevation and elevation2), and 
regression coefficients for all but one of the levels 
of the categorical variables (age and geology). We 
can see that small significance levels were estimated 
for the majority of variables.

The negative binomial model calculated a 

parameter theta that indicates that individuals are 
clumped since it is not large (4.08).

The model now explains most of the deviance in 
the data, with an explained deviance of ((210.25-
36.28)/210.25) or 82.7% of total deviance. For an 
ecological model, the explained deviance is very 
high.

Different to the previous outputs is that two 
types of ANOVA tables are given. The second 
one is a type-II ANOVA, which is based on 
deletions of variables from the model. The type-
II ANOVA lists the residual deviance for several 
models where one variable was deleted. You can 
verify that the deviance of 41.278 when elevation2 
is removed from the model (as provided by type-
II ANOVA) corresponds to the residual deviance 
of 41.278 after precipitation, precipitation2, 
geology, age and elevation were added to the 
model (as given by type-I ANOVA). The type-II 
ANOVA investigates whether there is evidence 
that removing one variable would result in a 
significantly lower deviance that is explained by the 
simplified model. For a normal (type-I) ANOVA 
that we showed earlier, the sequence by which the 
variables are listed in the model may influence the 
results of the ANOVA. This will be only the case 
if the variables are correlated. This is not the case 
for a type-II ANOVA, where the sequence will not 
influence the results. We advise to only use a type-
II ANOVA when there is no logical order in which 
the variables should be entered in the model. 

Analysing ANOVA tables for models with 
several explanatory variables may especially be 
useful when searching for alternative models for 
the same dataset. When we look at the effect of deleting 
age from the model, we can see that the more complex 
model explains more deviance (has less residual 
deviance: 36.280 – 48.396 = -12.116 or -5.7%), but 
the simpler model uses one variable less. Which 
model is better? This will depend partially on 
what you value more, a higher percentage of 
deviance that can be explained, or a higher degree 
of simplicity in your model. There are some 
statistical criteria that allow choosing between 
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glm.nb(formula = Faramea.occidentalis ~ Precipitation + I(Precipitation^2) + 
    Geology + Age.cat + Elevation + I(Elevation^2), data = faramea, 
    na.action = na.exclude, maxit = 5000, init.theta = 1, link = log)

Deviance Residuals: 
      Min         1Q     Median         3Q        Max  
-2.908282  -0.590816  -0.008352   0.136604   2.446988  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)    
(Intercept)        -8.800e+01  1.775e+01  -4.957 7.14e-07 ***
Precipitation       7.277e-02  1.438e-02   5.060 4.20e-07 ***
I(Precipitation^2) -1.514e-05  2.931e-06  -5.165 2.40e-07 ***
GeologyTb           2.752e+00  6.374e-01   4.318 1.57e-05 ***
GeologyTbo          3.422e+00  1.754e+00   1.951 0.050999 .  
GeologyTc           5.018e+00  9.283e-01   5.405 6.48e-08 ***
GeologyTcm          2.683e+00  7.106e-01   3.776 0.000159 ***
GeologyTgo         -9.910e-02  8.894e-01  -0.111 0.911288    
GeologyTl           1.593e+00  7.763e-01   2.052 0.040217 *  
Age.catc2          -3.230e+00  9.734e-01  -3.318 0.000906 ***
Age.catc3          -2.162e+00  7.652e-01  -2.825 0.004727 ** 
Elevation           4.973e-02  2.613e-02   1.903 0.057029 .  
I(Elevation^2)     -2.387e-04  1.102e-04  -2.167 0.030248 *  

(Dispersion parameter for Negative Binomial(4.0754) family taken to be 1)

    Null deviance: 210.25  on 42  degrees of freedom
Residual deviance:  36.28  on 30  degrees of freedom
AIC: 152.99

              Theta:  4.08 
          Std. Err.:  2.39

Analysis of Deviance Table

Model 1: Faramea.occidentalis ~ 1
Model 2: Faramea.occidentalis ~ Precipitation + I(Precipitation^2) + Geology + 
    Age.cat + Elevation + I(Elevation^2)

  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)    
1        42     210.25                                 
2        30      36.28 12   173.97 14.497 < 2.2e-16 ***

Terms added sequentially (first to last)

                   Df Deviance Resid. Df Resid. Dev       F    Pr(>F)    
NULL                                  42    210.246                      
Precipitation       1   41.361        41    168.885 41.3610 1.266e-10 ***
I(Precipitation^2)  1   24.410        40    144.475 24.4098 7.787e-07 ***
Geology             6   80.851        34     63.624 13.4752 2.383e-15 ***
Age.cat             2   17.732        32     45.892  8.8660 0.0001411 ***
Elevation           1    4.614        31     41.278  4.6143 0.0317067 *  
I(Elevation^2)      1    4.998        30     36.280  4.9976 0.0253821 * 

Single term deletions

                   Df Deviance     AIC F value     Pr(F)    
<none>                  36.280 150.986                      
Precipitation       1   67.045 179.750 25.4393 2.059e-05 ***
I(Precipitation^2)  1   70.773 183.479 28.5223 8.902e-06 ***
Geology             6  106.457 209.163  9.6716 6.123e-06 ***
Age.cat             2   48.396 159.102  5.0095   0.01327 *  
Elevation           1   39.930 152.636  3.0186   0.09257 .  
I(Elevation^2)      1   41.278 153.983  4.1326   0.05100 .  

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1
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two models. These criteria use different methods 
of penalizing extra deviance explained with extra 
explanatory variables. These are very similar to 
ANOVA in comparing whether the extra deviance 
explained by model 1 is significantly higher than 
the deviance explained by model 2. One of such 
criteria uses the AIC (or Akaike Information 
Criterion). A model with a lower AIC has a better 
combination of simplicity and explained deviance 
– provided that you agree with the way that 
simplicity and explained deviance are weighted 
by the AIC. The type-II ANOVA table provides 
the AIC for the most complex and all models with 
one deleted variable. We can see that the most 

complex model has the lowest AIC (150.986) of 
all the models, which suggests that all variables 
should be included in the model (although it is 
a probably worth again to remind you that we 
assume that only variables were measured for 
which there was a prior hypothesis that they could 
explain abundance).

Figure 6.12 plots the predicted abundance 
against precipitation. We can see in this figure that 
a complex pattern occurs, since the abundance is 
now regressed against all the explanatory variables. 
We therefore do not see the effect of precipitation 
only, but of the other variables as well. We can see 
that the observed abundances are predicted better.

Figure 6.12  Observed values (circles) and predictions (lines) for the negative binomial GLM with log link of the 
abundance of Faramea occidentalis on geology, age category and the second-order polynomials of precipitation and 
elevation.
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We can check the predictions for an explanatory 
variable in isolation by using a termplot. Figure 6.13 
provides the termplot for age for the last model 
that we fitted. The full lines show the abundance 
that is predicted by the model coefficients. We 
can see that lower abundance is predicted for age 
categories 2 and 3, since the confidence intervals 
do not overlap with the confidence interval for age 
category 1. We can also see that the deviance that 
is explained by age is relatively small by comparing 
the difference between the predicted abundance 
and the actual abundance. Another feature of the 
data is that the lowest abundance is predicted for 
age category 2. Updating our model by using 
age as a continuous variable shows that there is 
no evidence that age has an effect – we can not 
assume that there is a straight line that will fit the 
effect of age on abundance. Allowing for different 
predicted abundances for each age category 
provides a better fit to our data.

Figure 6.13  Observed values (circles) and predicted values (lines) for the termplot for age category for the negative 
binomial GLM with log link of the abundance of Faramea occidentalis on geology, age category and the second-
order polynomials of precipitation and elevation. The rugplots show the distribution of the x and y values by adding 
a random term for values that are tied (for example, there are only three categories of age but the rugplots show the 
number of observations within each category).

Generalized Mixed Models
A lot more could be said about the models that we 
utilized already. The scope of this manual is too 
limited, however, to cover these models in more 
detail. For example, all the models here assume 
that the random residuals are uncorrelated. This 
might often be unreasonable, for example if a 
hierarchical sampling and measurement scheme 
were used. Mixed models have been developed for 
such situations (Quinn and Keough 2002). 

The original dataset that we analysed here 
actually also had been sampled and measured in a 
hierarchical way (with 50 B sites), but we avoided 
the problem by only using the first and last sampled 
B site to remove the dominance of those sites in 
the dataset. We opted for this approach as this 
avoided the need for mixed models, and because 
the original dataset mixed data from different types 
of sample plots, something discussed in chapter 2. 
This type of practical approach to overcoming a 
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statistical analysis problem is important. The final 
result may not be optimal if it does not use all 
available data, but it is clear and valid.

Choice of the best model
The most important criterion to guide you when 
you are given a choice between various models 
is that the assumptions of the models need to 
be realistic. We showed that the residuals of the 
models were used to check the reliability of the 
regression models, which guided us towards 
generalized linear models. 

You may also favour models with a good balance 
between explanatory power and simplicity. Some 
tests (such as the AIC) may be used to help you in 
selecting the model with the best balance.

Analysing diversity
The examples that we provided in this chapter were 
for the number of trees of a particular species for 
each site. You can do the same analysis for the total 
number of species per site, or for the total number 
of trees per site. The methodology is exactly the 
same as the response variable is again calculated 
as a count of the number of objects found in each 
site, only that it is not the count of the trees of 
a single species but the count of the number of 
species or the total number of trees.

You could also perform the same calculations 
for a measure of diversity (see chapter on diversity) 
that was calculated for each site.

All these other calculations are possible, in 
principle. You will need to do diagnostic tests (as 
with the previous models) to check whether the 
assumptions of the model were met. In case that 
this is the case, then you can rely on the results.
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Doing the analyses with the menu options of Biodiversity.R

Load the datasets Panama species.txt and Panama environmental.txt, and make them the species and 
environmental datasets, respectively. Give them the names “spec” and “faramea”.

Data > Import data > from text file… (Panama species.txt)
 Enter name for dataset: spec
Data > Import data > from text file… (Panama environmental.txt)
 Enter name for dataset: faramea
Biodiversity > Community Matrix > Select community dataset…
 Data set: spec
Biodiversity > Environmental Matrix > Select environmental dataset…
 Data set: faramea

These are the original datasets, to use the reduced datasets that will be analysed, remove the sites where 
there is missing information on the variable “Analysed”.

Biodiversity > Community matrix > Remove NA from environmental dataset…
 Select variable: Analysed

As an alternative, load the dataset Faramea.txt, and make it both the species and environmental dataset 
(as both the species and environmental information is in the same dataset).

Data > Import data > from text file… (Faramea.txt)
 Enter name for dataset: faramea
Biodiversity > Community Matrix > Select community dataset…
 Data set: faramea
Biodiversity > Environmental Matrix > Select environmental dataset…
 Data set: faramea

To calculate a linear regression model:
Biodiversity > Analysis of species as response > Species abundance as response…
 Model options: linear model
 Response: Faramea.occidentalis
 Explanatory: Precipitation
 print summary
 print anova
 Plot options: diagnostic plots
 Plot variable: Precipitation
 Plot options: diagnostic plots
 Plot options: term plot
 Plot options: effect plot
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To calculate a generalized linear regression model (GLM):
Biodiversity > Analysis of species as response > Species abundance as response…
 Model options: Poisson model
 Response: Faramea.occidentalis
 Explanatory: Precipitation
 print summary
 print anova
 Model options: quasi-Poisson model
 Model options: negative binomial model

To calculate a generalized additive regression model (GAM):
Biodiversity > Analysis of species as response > Species abundance as response…
 Model options: gam model
 Response: Faramea.occidentalis
 Explanatory: s(Precipitation)
 print summary

To calculate a multiple regression model:
Biodiversity > Analysis of species as response > Species abundance as response…
 Model options: negative binomial model
 Response: Faramea.occidentalis
 Explanatory: Precipitation + I(Precipitation^2)
 print summary
 print anova
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Doing the analyses with the command options of Biodiversity.R 

Load the dataset Faramea.txt and give it the name “faramea”.
faramea <- read.table(file=”D://my files/Faramea.txt”)

To calculate a linear regression model:
Count.model1 <- lm(Faramea.occidentalis ~ Precipitation,   

data=faramea,  na.action=na.exclude)

summary(Count.model1)

fitted(Count.model1)

predict(Count.model1, interval=’confidence’)

residuals(Count.model1)

shapiro.test(residuals(Count.model1))

ks.test(residuals(Count.model1), pnorm)

anova(Count.model1,test=’F’)

Count.model2 <- lm(Faramea.occidentalis ~ Age.cat, 
data=faramea, na.action=na.exclude)

levene.test(residuals(Count.model2), na.omit(faramea)$Age.cat)

To plot a linear regression model:
plot(Count.model1)

termplot(Count.model1, se=T, partial.resid=T, rug=T, 
terms=’Precipitation’)

plot(effect(‘Precipitation’, Count.model1))

To check for the spatial distribution of residuals:
surface.1 <- residuals.surface(Count.model1, na.omit(faramea), 

‘UTM.EW’, ‘UTM.NS’, gam=F, npol=1, plotit=T, bubble=F, 
fill=F)

surface.2 <- residuals.surface(Count.model1, na.omit(faramea), 
‘UTM.EW’, ‘UTM.NS’, gam=F, npol=2, plotit=T, bubble=F, 
fill=F)

surface.2 <- residuals.surface(Count.model1, na.omit(faramea), 
‘UTM.EW’, ‘UTM.NS’, gam=F, npol=2, plotit=T, bubble=T, 
fill=F)

surface.gam <- residuals.surface(Count.model1, 
na.omit(faramea), ‘UTM.EW’, ‘UTM.NS’, gam=T, npol=2, 
plotit=T, bubble=F, fill=T)

summary(surface.1)

anova(surface.1)

correlogram(surface.1, nint=10)

summary(surface.gam)
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To calculate a generalized linear regression model (GLM):
Count.model3 <- glm(formula = Faramea.occidentalis ~ 

Precipitation, family = poisson(),data=faramea, 
na.action=na.exclude)

summary(Count.model3)

anova(Count.model3,test=’F’)

predict(Count.model3, type=’response’, se.fit=T)

Count.model4 <- glm(formula = Faramea.occidentalis ~ 
Precipitation, family = quasipoisson(), data=faramea, 
na.action=na.exclude)

Count.model5 <- glm.nb(Faramea.occidentalis ~ Precipitation, 
maxit = 5000, init.theta = 1, data=faramea, na.action=na.
exclude)

To calculate a generalized additive regression model (GAM):
Count.model6 <- gam(Faramea.occidentalis ~ s(Precipitation), 

family=poisson(), data = na.omit(faramea))

summary(Count.model6)

predict(Count.model6, type=’response’, se.fit=T)

To calculate a multiple regression model:
Count.model7 <- glm.nb(Faramea.occidentalis ~ Precipitation 

+ I(Precipitation^2), maxit = 5000, init.theta = 1, 
data=faramea, na.action=na.exclude)

summary(Count.model7)

anova(Count.model7, test=’F’)

Anova(Count.model7, type=’II’, test=’Wald’)

vif(lm(Faramea.occidentalis ~ Precipitation + 
I(Precipitation^2), data=faramea, na.action=na.exclude)
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CHAPTER 7

Analysis of presence 
or absence of species

Analysis of presence or absence 
of species

In the previous chapter, we saw how species counts 
data can be analysed. In this chapter, we describe 
how data can be analysed that simply indicate 
whether a species is present in certain sites or 
absent. As for the analysis of species counts data, 
the data are analysed for one species at the time. 

Analysis of presence or absence 
by cross-tabulations
As in the previous chapter, we will use a dataset 
that was collected in Panama, containing 
information on the abundance of Faramea 
occidentalis. This dataset also has observations 
for the environmental variables precipitation 
(quantitative), altitude (quantitative), age (ordinal) 
and geology (categorical). The dataset is provided 
in the previous chapter. 

Imagine that you had a hypothesis that age had 
an influence on the chance that species Faramea 
occidentalis was present on a site. We treat age as a 

categorical variable – since it is an ordinal variable, 
we can choose whether we treat it as quantitative 
or categorical variable in subsequent analysis.

In a cross-tabulation analysis, you first need to 
count the number of sites of each category where 
the species occurs, and the number of sites where 
the species does not occur. You obtain these results 
by doing a cross-tabulation of species presence-
absence with the age categories:

  
         c1 c2 c3
  FALSE  5  6 12
  TRUE   9  5  6

In the table, the rows indicate whether the species 
is absent (FALSE, based on the test whether the 
abundance > 0) or present (TRUE, based on the 
same test whether the abundance was > 0). The 
columns represent the three age categories. This 
table is a cross-tabulation or a contingency table. 
The cells in the table are counts of the number 
of observations within the specified categories of 
rows and columns.

We can also present these results graphically as 
in Figure 7.1.

Figure 7.1  Observed frequencies for the presence and 
absence of Faramea occidentalis on three categories 
of age.
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You can see that for sites of age category 1, the 
species occurs in 9 of 14 (14 = 5 +9) cases. Similarly, 
the species occurs in 5 of 11 sites of age category 2, 
and 6 of 18 sites of age category 3. For age category 
1, we can use this information to calculate that the 
species has 9 / 14 × 100% = 64% chance of being 
present when the site is of age category 1. Using 
the same method, we can use the information to 
calculate a chance of 5 / 14 × 100% = 36% of 
being absent on sites of age category 1. From the 
table we can therefore calculate the chance that 
the species is present or absent on sites of a certain 
category, if sites are selected randomly. When we 
also calculate the chances for the other categories, 
we can calculate the following table:

Chances Age 
category 
1

Age 
category 
2

Age 
category 
3

Chance that the 
species is present 
(%)

64.3 45.5 33.3

Chance that the 
species is absent 
(%)

35.7 54.5 66.7

To find out whether the proportions are 
significantly different from each other, you can 
use a Chi-squared test. The result that you obtain 
will be:

       Pearson’s Chi-squared test
data:  cross 
X-squared = 3.0393, df = 2, p-value = 0.2188

This result shows that there is no evidence 
that differences in proportions exist between the 
three age categories. The significance level of P = 
0.2188 indicates that there is a large chance that 
the differences in proportions are an effect from the 
random sampling of the sites from the survey area. 

The Chi-squared test is limited in several ways. 
First of all, it is a test and is therefore not explicit 
in providing estimated or predicted values (the 
chances that were calculated earlier are not 
generated by the Chi-squared test). Secondly, the 
Chi-squared test can only be used to analyse the 
effect of a single categorical variable. Finally, the 
test is based on some assumptions that may not 
be reasonable. 

The conditions for the Chi-squared test to be 
reliable are that the expected frequencies (expected 
when there is no relationship between the two 
variables that generated the crosstab) are not too 
small. How are the expected frequencies calculated 
and how do we evaluate whether some expected 
values are too small? The expected frequencies 
are calculated by multiplying the chance that the 
species is present or absent by using frequencies 
from the entire dataset with the number of sites 
of each age category. For the entire dataset of 43 
sites, species presence was observed in 20 (=9 + 5 
+ 6) sites or 46.5% (20 / 43 × 100%) of all sites. 
The number of sites that are expected to contain 
the species for age category 1, when there is no 
relationship between age and presence-absence, is 
therefore 0.465 × 14 (=9 + 5) = 6.51. The expected 
frequencies can be calculated for each combination 
of presence-absence and age category as:  

              c1       c2       c3
  FALSE 7.488372 5.883721 9.627907
  TRUE  6.511628 5.116279 8.372093

The condition for the Chi-squared test to provide 
reliable results is that all the expected frequencies 
should be larger than 5 (a less strict condition 
is that more than 20% of expected frequencies 
should be larger than 5, but none should be 
smaller than 1). Since all expected frequencies 
are larger than 5, we can rely on the Chi-squared 
test to have provided a reliable result. The Chi-
squared test actually estimates the probability that 
the measured and expected frequencies will be the 
same for the survey area. 
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Another criticism of the Chi-squared test is that it 
ignores the ordering of the age categories – the table 
above showed that there is a trend of decreasing 
chance of encountering the species when the age 
of the plot is greater, but the Chi-squared test does 
not investigate the ordering of the age categories.

Analysis of presence or absence 
through binomial GLM
We can investigate the same hypothesis that there 
is an influence of age category on the presence-
absence of Faramea occidentalis with a binomial 
GLM with logit link. 

As we saw in the previous chapter, a GLM is 
defined by the variance function and the link 
function. When we define the variance and link 
functions, we assume that these functions are 
realistic descriptions for the dataset that we are 
investigating.

The logit link is defined as: 
logit(µ) = log( µ / (1 – µ) ) =  a + b1 × x1 + b2 × 

x2 + b3 × x3 + …

The logit link function is one way of guaranteeing 
that the predicted values will be between 0 and 
1, which is appropriate since we want to predict 
probabilities of presence of Faramea occidentalis 
which also are between 0 and 1. In the previous 
chapter where we analysed counts, we used a log 
link that ensured that the predicted values were 
larger than 0, but not that the predicted values 
were smaller than 1.

By investigating the hypothesis with a GLM, 
we overcome some of the shortcomings of 
the Chi-squared test: the GLM will provide 
predictions, and several explanatory variables can 
be analysed – including quantitative variables. 
Not all shortcomings of the Chi-squared test are 
overcome, however: the large sample assumptions 
are still needed for the tests of the GLM to provide 
realistic results.

The binomial GLM with logit link investigating 
the influence of age on presence-absence yields the 
following results:

glm(formula = Faramea.occidentalis > 0 ~ Age.cat, family = binomial(link = logit), 
    data = faramea, na.action = na.exclude)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept)   0.5878     0.5578   1.054   0.2920  
Age.catc2    -0.7701     0.8233  -0.935   0.3496  
Age.catc3    -1.2809     0.7491  -1.710   0.0873 .
---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1 

(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 56.322  on 40  degrees of freedom
AIC: 62.322

Analysis of Deviance Table
Terms added sequentially (first to last)
        Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL                       42     59.401          
Age.cat  2    3.079        40     56.322     0.214 
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The results of the GLM first show the coefficients 
that were calculated. As for the analysis of counts 
data, the first category is not included explicitly 
in the results. The results for the first category 
correspond to the intercept, however.

As we saw in the previous chapter, it is a bit 
complicated to directly calculate the expected 
values from the estimations of the coefficients. The 
reason is that the inverse link function needs to 
be calculated to obtain the expected values. In the 
case of the logit link, the inverse logit is calculated 
as y  = exp(x)/(1+exp(x)). However, the program 
that fits the model should be able to provide 
the predicted values. Here we obtain following 
predictions for the three categories: 0.64, 0.45 and 
0.33. You could calculate these results yourself by 
using the inverse logit as in the box below.

You can see that you obtain the same predictions 
with the GLM as the chances for presence of the 
species that we calculated earlier. For example, the 
chance of presence for sites with age category 2 is 
calculated in both instances to be 45.5%. 

The large significance level values estimated 
for the regression coefficients indicate that there 
is no evidence for significant differences between 
the predicted chances, however. The ANOVA 
table provides similar information by estimating 
a large significance level (P = 0.21). The ANOVA 
table also provides important information on the 
deviance that is explained: the model only explains 
3.079 or 5.2% of total or null deviance (59.401).  

The Chi-squared test of the ANOVA table is 
a test for the same pattern that was tested at the 

beginning of this chapter by the Chi-squared test 
for the contingency table. You could check that 
the explained deviance (3.079) is very similar to 
the Chi-squared statistic (3.039) – calculating the 
deviance is actually another method for analysing a 
cross-tabulation (called a G-test in some manuals). 
What is important is that both the ANOVA and 
the earlier Chi-squared test estimate a similar 
significance level (P = 0.214 and P = 0.2145), 
leading to the same conclusion of no evidence for 
an influence of age on the presence-absence. You 
can also see the limitations of the Chi-squared test 
– it is as if you ignore all other results from the 
GLM.

The results from the model can also be analysed 
graphically as in Figure 7.2. Because the observed 
values are either 0 (absence) or 1 (presence), the 
figure is not very informative and mainly shows 
the predicted chances for presence of the species 
for each age category. The wide overlap between 
the 95% confidence intervals shows that there is 
no evidence for an effect of age.

As with all regression models, the binomial 
GLM makes various assumptions about the data. 
Whether you can trust the results depends on 
whether these assumptions are realistic. 

The quasi-binomial model was developed for 
situations where one of the assumptions of the 
binomial model does not hold – that the dispersion 
equals 1. As we saw in the previous chapter, 
for our type of data the dispersion parameter is 
an indication of how randomly individuals are 
distributed. A dispersion parameter of 1 means 

Expected values: 

Age category x: inverse logit(intercept + coefficient for age category x) 

Age category 1: inverse logit(0.5878+0) = 
     exp(0.5878+0) / (1 + exp (0.5878+0) ) = 0.6428602

Age category 2: inverse logit(0.5878-0.7701) =
     exp (0.5878-0.7701) / (1 + exp (0.5878-0.7701) ) = 0.4545508

Age category 3: inverse logit(0.5878-1.2809) =
     exp (0.5878-1.2809) / (1 + exp (0.5878-1.2809) ) = 0.3333438
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Figure 7.2  Predicted values (horizontal lines) for the binomial GLM with logit link of the presence-absence of 
Faramea occidentalis on age category. Dashed lines are 95% confidence intervals for the mean.

glm(formula = Faramea.occidentalis > 0 ~ Age.cat, family = quasibinomial(link = logit), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.4350  -1.0008  -0.9005   1.0979   1.4823  

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   0.5878     0.5783   1.016    0.316
Age.catc2    -0.7701     0.8536  -0.902    0.372
Age.catc3    -1.2809     0.7767  -1.649    0.107

(Dispersion parameter for quasibinomial family taken to be 1.075000)

    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 56.322  on 40  degrees of freedom
AIC: NA

Analysis of Deviance Table

        Df Deviance Resid. Df Resid. Dev      F Pr(>F)
NULL                       42     59.401              
Age.cat  2    3.079        40     56.322 1.4322 0.2508

that the individuals are randomly distributed over 
the sample units. When dispersion is not 1, the 
GLM will estimate significance levels that are not 
realistic. A quasi-binomial GLM will estimate the 
same regression coefficients as the binomial GLM, 
but will estimate the dispersion parameter and 

use this dispersion parameter to provide different 
estimates of standard errors and significance 
levels.

The quasi-binomial GLM with logit link 
investigating the influence of age on presence-
absence yields the following results:



108     CHAPTER 7

When we compare the results from the quasi-
binomial GLM with the binomial GLM, we can 
see that the quasi-binomial model estimated the 
dispersion parameter to be 1.075. Since there is a 
small difference between 1.075 and 1, there will 
not be any substantive difference in conclusions 
whether the dispersion is fixed as 1 as in the 
binomial, or estimated as in the quasibinomial. It 
is possible to test whether the estimated dispersion 
is different from 1, and perhaps infer something 
on the clumpiness of the distribution on the 
basis of the results. However, such tests have the 
usual problems: they depend on the validity of 
the models assumed, and the results depend on 
both the sample size and the dispersion. Probably 
a better approach is to first think whether 
overdispersion is likely given the source of the 
data, and pay careful attention when it is. Then 
check whether the results differ in substance 
between the two models. If interest is really into 
the extent to which the distribution is clumped, 
regular or random, then there are better methods 
which focus on this aspect.

Since the dispersion parameter was estimated 
to be very close to one, only small differences in 
the estimated significance levels can be observed 
(for instance P = 0.25 in the ANOVA instead 
of P = 0.21) and both models lead to the same 
conclusions. Note that it is a good practice to 
check for the difference between the results of 
the binomial and the quasi-binomial GLM. 
A disadvantage of the quasi-binomial GLM 
implemented here is that it does not calculate the 
Akaike Information Criterion (AIC), which can 
be used for model selection (see previous chapter 
and below: binomial GLM with several explanatory 
variables). An advantage of the quasi-binomial GLM 
is that it provides better estimates of significance 
level when the dataset has a dispersion parameter 
that is more different from 1. 

Binomial and quasi-binomial GLM 
with continuous variables
We have seen so far that analysis of a binomial or 
quasi-binomial GLM with logit link provides a 
more comprehensive analysis of frequencies than 
the Chi-squared test (which is only a test) and 
that estimation is explicit in the GLM. Another 
advantage of the GLM approach is that the 
explanatory variables can either by continuous or 
categorical. 

To analyse a cross tabulation with continuous 
explanatory variables with a Chi-squared test, 
you need to derive a categorical variable from the 
continuous variable. You need to define several 
categories, for instance a category for altitude < 200 
m and another category for altitude > 200 m. These 
categories need to be defined by the researcher, and 
there is no procedure that can tell you how these 
categories should be defined. With the binomial 
GLM, you do not need to make this decision. 
More importantly, when the relationship between 
the explanatory variable and the response variable is 
not a stepwise function but a gradual change, it is 
better to model the gradual change. The binomial 
GLM will accommodate gradual changes for a 
continuous variable, which often provides a more 
realistic model. 

We can for example model the presence and 
absence of Faramea occidentalis based on the 
precipitation of a site with a quasi-binomial GLM 
with logit link. The results that you will obtain are 
shown in the box on the next page.

You could notice that we used a quasi-binomial 
model. The dispersion parameter is estimated to be 
0.987, very close to 1. Both the binomial and the 
quasi-binomial GLM therefore lead to the same 
conclusions. 

As in the regression results that we saw earlier, 
regression coefficients are provided for the 
explanatory variable. We can see that there is 
evidence that precipitation has an effect, since the 
significance level calculated for the coefficient is 
low (P = 0.0172). We can also infer that there is 
an effect of precipitation from the low significance 
level of the ANOVA table (P = 0.005).
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glm(formula = Faramea.occidentalis > 0 ~ Precipitation, family = quasibinomial(link = 
logit), data = faramea, na.action = na.exclude)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.7303  -1.0431  -0.3289   1.1157   1.7268  

Coefficients:
               Estimate Std. Error t value Pr(>|t|)  
(Intercept)    6.948352   2.828347   2.457   0.0183 *
Precipitation -0.002721   0.001095  -2.484   0.0172 *

(Dispersion parameter for quasibinomial family taken to be 0.9878437)

    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 50.561  on 41  degrees of freedom
AIC: NA

Analysis of Deviance Table

              Df Deviance Resid. Df Resid. Dev      F   Pr(>F)   
NULL                             42     59.401                   
Precipitation  1    8.841        41     50.561 8.9494 0.004682 **

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

Figure 7.3  Observed values (circles) and predicted values (connected by line) for the quasi-binomial GLM model 
of the presence-absence of Faramea occidentalis on elevation. Dashed lines are 95% confidence intervals for the 
mean.
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The predictions of the model can be shown 
graphically as well. Figure 7.3 provides the observed 
and the predicted values.

You can see the merit of the logit link in not 
predicting values outside of the interval with 0 and 
1 as boundaries. By using the logit link, the GLM 
model does not predict values that we do not expect. 
The plot of the observations is more informative for a 
continuous than for a categorical variable: you could 
observe now that the species was never observed 
at the highest precipitation levels, and that it was 
never not observed at the lowest precipitation levels. 
At intermediate levels, the species was sometimes 
observed. This pattern is modelled as an S-shaped 
curve, which provides a reasonable fit to the data.

Another advantage of the binomial and quasi-
binomial GLM with logit link is that several 
explanatory variables can be investigated. An example 
is provided later in this chapter.

Binomial GAM with several 
explanatory variables

As for the regression models for count data, you 
can also fit a Generalized Additive Model (GAM) 
using the same variance and link functions that are 
used in a GLM. The GAM allows estimation of a 
smooth relationship between the response and a 
quantitative explanatory variable. The smoothing 
function will generate a curve that can flow more 
freely in between the data than a straight line.

When we calculate a quasi-binomial GAM 
with logit link for the presence and absence of 
Faramea occidentalis using smoothing functions 
of precipitation and elevation, and the categorical 
variables geology and age category, then we 
obtain the following results:

Family: quasibinomial 
Link function: logit 

Formula:
Faramea.occidentalis > 0 ~ s(Precipitation) + Geology + Age.cat + 
    s(Elevation)

Parametric coefficients:
              Estimate  std. err.    t ratio    Pr(>|t|)
(Intercept)    -382.04      8.204     -46.57    < 2.22e-16
  GeologyTb     30.746      314.9    0.09764    0.92287
 GeologyTbo     14.571  2.499e+04   0.000583    0.99954
  GeologyTc     891.93       20.1      44.37    < 2.22e-16
 GeologyTcm       15.3       3795   0.004032    0.9968
 GeologyTgo     7.3746      1.204      6.126    9.6953e-07
  GeologyTl     137.55  1.114e+04    0.01234    0.99023
  Age.catc2    -103.74       1434   -0.07235    0.9428
  Age.catc3    -88.072      2.189     -40.23    < 2.22e-16

R-sq.(adj) =      1   Deviance explained =  100%
GCV score = 5.0022e-06   Scale est. = 3.4996e-06  n = 43

Analysis of deviance table

Parametric Terms:
                df       chi.sq     p-value
Geology          6       1986.4     < 2.22e-16
Age.cat          2       1618.3     < 2.22e-16

Approximate significance of smooth terms:
                        edf       chi.sq     p-value
s(Precipitation)      2.917       2252.5     < 2.22e-16
    s(Elevation)          1       1499.4     < 2.22e-16
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The quasi-binomial GAM with logit link 
indicates that all explanatory variables contribute 
to explaining the deviance in the presence-absence 
of the species. The edf indicate the estimated 
degrees of freedom for the smoothing functions. 
The fact that 3 degrees of freedom are estimated 
for precipitation shows that a complex pattern was 
modelled for this explanatory variable. 

Since our dataset was quite small, all deviance 
was explained, and the significance level values 
that were estimated were ridiculously small, we 
need to treat the results with caution. We expect 

that the model overfitted the data, although it is 
hard to see with presence-absence data and several 
variables. We therefore opted to analyse the dataset 
further with a GLM in the next section to find 
out whether there was further evidence for the 
complex pattern between presence-absence and 
the quantitative variables. An alternative approach 
would have been to fix the degrees of freedom 
for the smoothing terms in a GAM, forcing the 
curve to be smoother and not have such a complex 
shape. The results with 2 degrees of freedom for 
precipitation and elevation look more reasonable:

Family: quasibinomial 
Link function: logit 

Formula:
Faramea.occidentalis > 0 ~ s(Precipitation, k = 2, fx = T) + 
    Geology + Age.cat + s(Elevation, k = 2, fx = T)

Parametric coefficients:
              Estimate  std. err.    t ratio    Pr(>|t|)
(Intercept)    -77.189      39.05     -1.976    0.057364
  GeologyTb     1.4079      1.286      1.094    0.28250
 GeologyTbo     31.498       1023    0.03078    0.97565
  GeologyTc     24.648       9.48        2.6    0.014332
 GeologyTcm     28.945      396.8    0.07294    0.94234
 GeologyTgo    -2.0587       2.03     -1.014    0.3187
  GeologyTl     13.802      634.6    0.02175    0.9828
  Age.catc2      -16.9      88.73    -0.1905    0.85022
  Age.catc3    -4.1095       1.93     -2.129    0.041593

R-sq.(adj) =  0.695   Deviance explained = 75.8%
GCV score = 0.70325   Scale est. = 0.49064   n = 43

Analysis of deviance table

Parametric Terms:
                df       chi.sq     p-value
Geology          6       8.8875     0.21822
Age.cat          2       4.5391     0.12083

Approximate significance of smooth terms:
                        edf       chi.sq     p-value
s(Precipitation)          2       6.2923     0.057491
    s(Elevation)          2       3.8408     0.16414
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Binomial GLM with several 
explanatory variables

As already shown for the GAM, it is possible to 
analyse several explanatory variables together in a 
GLM – this was also shown in the previous chapter.

Based on the results of the quasi-binomial GAM 
with logit link that showed curved relationships 

glm(formula = Faramea.occidentalis > 0 ~ Precipitation + I(Precipitation^2) + 
    Geology + Age.cat + Elevation + I(Elevation^2), family = binomial(link = logit), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
       Min          1Q      Median          3Q         Max  
-2.031e+00  -2.753e-02  -2.107e-08   8.387e-02   1.977e+00  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
(Intercept)        -1.137e+02  8.737e+01  -1.302    0.193
Precipitation       1.006e-01  7.594e-02   1.324    0.185
I(Precipitation^2) -2.223e-05  1.644e-05  -1.352    0.176
GeologyTb           1.401e+00  1.718e+00   0.815    0.415
GeologyTbo          2.962e+01  1.075e+04   0.003    0.998
GeologyTc           1.266e+01  8.055e+00   1.572    0.116
GeologyTcm          2.642e+01  4.153e+03   0.006    0.995
GeologyTgo         -1.270e+00  2.709e+00  -0.469    0.639
GeologyTl           1.792e+01  7.274e+03   0.002    0.998
Age.catc2          -9.695e+00  1.024e+01  -0.946    0.344
Age.catc3          -2.983e+00  2.458e+00  -1.214    0.225
Elevation           8.701e-02  1.161e-01   0.749    0.454
I(Elevation^2)     -4.493e-04  5.293e-04  -0.849    0.396

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 17.376  on 30  degrees of freedom
AIC: 43.376

Analysis of Deviance Table

Model 1: Faramea.occidentalis > 0 ~ 1
Model 2: Faramea.occidentalis > 0 ~ Precipitation + I(Precipitation^2) + 
    Geology + Age.cat + Elevation + I(Elevation^2)
  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)    
1        42     59.401                                 
2        30     17.376 12   42.025 3.5021 3.298e-05 ***

between elevation, precipitation and the presence-
absence of Faramea occidentalis, we fitted a second-
order polynomial model for the quantitative 
variables (see previous chapter). The results of the 
binomial GLM with logit link of the presence-
absence of Faramea occidentalis on geology, age 
category and the second-order polynomials of 
precipitation and elevation are:
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Terms added sequentially (first to last)

                   Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL                                  42     59.401          
Precipitation       1    8.841        41     50.561     0.003
I(Precipitation^2)  1    0.722        40     49.838     0.395
Geology             6   21.144        34     28.694     0.002
Age.cat             2    7.605        32     21.089     0.022
Elevation           1    2.837        31     18.252     0.092
I(Elevation^2)      1    0.876        30     17.376     0.349

Single term deletions

                   Df Deviance    AIC    LRT   Pr(Chi)    
<none>                  17.376 43.376                     
Precipitation       1   20.871 44.871  3.495 0.0615481 .  
I(Precipitation^2)  1   21.441 45.441  4.065 0.0437749 *  
Geology             6   40.674 54.674 23.298 0.0007025 ***
Age.cat             2   24.799 46.799  7.423 0.0244364 *  
Elevation           1   18.020 42.020  0.645 0.4220785    
I(Elevation^2)      1   18.252 42.252  0.876 0.3492853 
---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1 

The main reason for having conducted the analysis 
is to select variables that meaningfully contribute to 
explaining the deviance, with special focus on the 
second-order polynomial terms of precipitation2 
and elevation2. We saw in the previous chapter 
that one of the criteria that can be used for 
selecting variables is the Akaike Information 
Criterion (AIC). Models with a smaller AIC are 
preferred over models with larger AIC. The type-
II ANOVA provides a column with the AIC. We 
can see that the AIC for elevation2 is smaller than 
the model where this variable is included (42.252 
< 43.376). Based on these results, a model where 
elevation2 is not included will provide a better 

combination of simplicity (fewer variables) and 
explained deviance, provided that the way that the 
AIC calculates the combination is the best way. 
The analysis of the AIC indicates what caused our 
problem with the first GAM results: the GAM 
sacrificed simplicity to explain all the deviance 
– this is not necessarily the best model. Because 
of the smaller AIC, we excluded elevation2 from 
further analysis. The results of type-II ANOVA 
for the quasi-binomial GLM with logit link of 
the presence-absence of Faramea occidentalis on 
geology, age category, elevation and the second-
order polynomial of precipitation now indicated 
that all variables could be kept in the model (see 
next page):
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glm(formula = Faramea.occidentalis > 0 ~ Precipitation + I(Precipitation^2) + 
    Age.cat + Geology + Elevation, family = quasibinomial(link = logit), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
       Min          1Q      Median          3Q         Max  
-2.253e+00  -6.919e-02  -2.107e-08   1.639e-01   1.839e+00  

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)  
(Intercept)        -8.178e+01  5.183e+01  -1.578   0.1247  
Precipitation       7.501e-02  4.577e-02   1.639   0.1114  
I(Precipitation^2) -1.655e-05  9.835e-06  -1.683   0.1024  
Age.catc2          -8.156e+00  5.234e+00  -1.558   0.1293  
Age.catc3          -1.890e+00  1.363e+00  -1.387   0.1753  
GeologyTb           1.846e+00  1.324e+00   1.395   0.1730  
GeologyTbo          2.551e+01  9.106e+03   0.003   0.9978  
GeologyTc           9.729e+00  4.800e+00   2.027   0.0513 .
GeologyTcm          2.531e+01  3.519e+03   0.007   0.9943  
GeologyTgo         -3.601e-01  1.696e+00  -0.212   0.8333  
GeologyTl           1.839e+01  6.435e+03   0.003   0.9977  
Elevation          -1.179e-02  1.330e-02  -0.887   0.3820  
---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1 

(Dispersion parameter for quasibinomial family taken to be 0.7169455)

    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 18.252  on 31  degrees of freedom
AIC: NA

Analysis of Deviance Table

Model 1: Faramea.occidentalis > 0 ~ 1
Model 2: Faramea.occidentalis > 0 ~ Precipitation + I(Precipitation^2) + 
    Age.cat + Geology + Elevation
  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)    
1        42     59.401                                 
2        31     18.252 11   41.149 5.2178 0.0001320 ***

Terms added sequentially (first to last)

                   Df Deviance Resid. Df Resid. Dev       F    Pr(>F)    
NULL                                  42     59.401                      
Precipitation       1    8.841        41     50.561 12.3310 0.0013893 ** 
I(Precipitation^2)  1    0.722        40     49.838  1.0076 0.3232568    
Age.cat             2    0.991        38     48.847  0.6911 0.5085612    
Geology             6   27.758        32     21.089  6.4528 0.0001718 ***
Elevation           1    2.837        31     18.252  3.9577 0.0555415 . 
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Single term deletions
                   Df Deviance F value     Pr(F)    
<none>                  18.252                      
Precipitation       1   21.469  5.4648 0.0260342 *  
I(Precipitation^2)  1   21.969  6.3138 0.0173944 *  
Age.cat             2   28.606  8.7932 0.0009443 ***
Geology             6   40.748  6.3681 0.0001904 ***
Elevation           1   21.089  4.8193 0.0357555 * 

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1 

We showed the results for the quasi-binomial 
model as this model estimated dispersion to be 
0.71. As we saw before, the regression coefficients 
and deviances of the ANOVA tables are the same 
for the binomial and quasi-binomial models, 
but the estimated significance levels will be 
different.

One important pattern that you can observe in 
the results is that none of the significance values 
for the regression coefficients are small. Only the 
coefficient for the category of geology Tc has a 
significance level (P=0.0513) that is smallish. 
Despite the fact that there is no evidence 
from the significance levels of the regression 
coefficients, the model explains most of the 
deviance. Moreover, we used the AIC to select 
those variables that meaningfully contributed to 
explaining the deviance. 

What is going on? The reason for the difference 
between the regression and ANOVA results is 
that we have few observations for most categories 
of geology. This pattern is depicted in Figure 7.4. 
As we saw at the beginning of this chapter with 
analyses for cross-tabulations, we will not get 
reliable results when the number of observations 
is very small for one category (technically, when 
the expected frequencies are very small). For 
category Tbo there was only one observation, 
whereas only two categories had more than 5 
observations. Moreover, most categories are 
dominated either by presence or absence, which 

made it easier to obtain correct predictions. For 
example, by predicting for Tbo, Tcm and Tl 
that the species is present, all predictions will 
be correct. One of the problems with these data 
is that the model does not allow that predicted 
values are exactly 1 or exactly 0. Another problem 
is that since we only have 1 observation for Tbo, 
2 observations for Tl and 5 observations for Tcm, 
we do not have any information to infer that the 
same predictions will be valid for the entire survey 
area – the sample size is simply too small. The 
sample size is even too small for pT, although it 
is dominated by sites where the species is absent. 

Figure 7.4  Observations of the presence-absence of 
Faramea occidentalis categorized by geology.
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The fact that the small sample sizes and the similar 
observations within the categories of geology 
lead to a majority of correct predictions (and 
also a large amount of explained deviance since 
predicted and observed probabilities for presence 
were close), the other explanatory variables only 
needed to explain the odd cases such as the two 
sites with presence of the species on geology pT. 
This implies that sample size was also small for the 
other explanatory variables, so that significance 
levels for the regression coefficients were large.

In conclusion, we saw that the various models 
that we fitted explained most of the deviance, but 
that we do not have sufficient information to infer 
that similar patterns would be observed for the 
entire survey area. The sample size is simply too 
small. One possible solution could be to collapse 
some categories of geology into a smaller number 
of categories. This can only meaningfully be 
done if there is a logical method for combining 
the various categories. To further analyse the 
influence of geology on presence-absence with the 
present categories, we need to add new sites to the 
dataset. 

Always think whether your analysis objective 
is realistic given the data you have. With a small 
number of presence-absence observations, can you 
expect to be able to detect and estimate the effects 
of 7 geology types as well as the complex, curved 
relationships with precipitation and elevation? 

Choice of the best model
As seen at the end of the previous chapter, the most 
important criterion that you could use to choose 
between different models is the level to which 
the assumptions of the models are realistic. We 
investigated the residuals of the models that were 
used for count data to check the reliability of the 
regression models. With presence-absence data, 
the residuals are more difficult to investigate given 
that the observations were either 0 or 1. There is 

actually no standard method for investigating the 
residuals for presence-absence data.

You may also favour models with a good balance 
between explanatory power and simplicity. Some 
tests (such as the AIC) may be used to help you in 
selecting the model with the best balance.

However, it is not possible to provide tests or a 
procedure that will always select the one and only 
best model. The ecologist or biodiversity scientist 
needs to check (partially on non-statistical 
grounds) whether a particular model provides 
the best answer for the research hypothesis. The 
model with the largest AIC is not always the best 
in explaining a particular pattern. For example, 
when results of previous research efforts are also 
considered, a model with a slightly smaller AIC 
may be judged to be better for the particular 
study. All statistical models are approximations 
and simplifications of ecological patterns, rather 
than ‘correct’ descriptions of biological processes. 
So the purpose of modeling has to be considered 
along with statistical evidence when choosing 
between alternatives. For example, if average rate 
of response to a continuous explanatory variable is 
needed, a straight line model may be appropriate 
even if a curvature is statistically significant.

By having analysed the same dataset using the 
species counts as response variable in the previous 
chapter and transforming the counts to presence-
absence in this chapter, we saw that the analysis 
lead to different conclusions. Since a different 
response variable was used, this was not a complete 
surprise. The different response variable was a 
transformation of the other response variable, 
however. The different results therefore showed 
that the transformation had an important effect, 
and that a different pattern prevailed. This simply 
means that count and presence-absence data do 
not necessarily follow the same pattern. If you 
are interested in investigating both patterns, then 
you need to record species counts and not simply 
presence or absence. Again this should follow from 
the initial hypotheses that you had.
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Doing the analyses with the menu options of Biodiversity.R
Load the datasets Panama species.txt and Panama environmental.txt, and make them the species and 
environmental datasets, respectively. Give them the names “spec” and “faramea”.

Data > Import data > from text file… (Panama species.txt)

Enter name for data set: spec

Data > Import data > from text file… (Panama environmental.txt)

Enter name for data set: faramea

Biodiversity > Community Matrix > Select community data set…

Data set: spec

Biodiversity > Environmental Matrix > Select environmental data set…

Data set: faramea

These are the original datasets, to use the reduced datasets that will be analysed, remove the sites where 
there is missing information on the variable “Analysed”.

Biodiversity > Community matrix > Remove NA from environmental data set…

Select variable: Analysed

As an alternative, load the dataset Faramea.txt, and make it both the species and environmental dataset 
(as both the species and environmental information is in the same dataset).

Data > Import data > from text file… (Faramea.txt)

Enter name for data set: faramea

Biodiversity > Community Matrix > Select community data set…

Data set: faramea

Biodiversity > Environmental Matrix > Select environmental data set…
Data set: faramea

To analyse presence or absence by cross-tabs:
 Biodiversity > Analysis of species as response > Species presence-absence as response…

Model options: crosstab

Response: Faramea.occidentalis

Explanatory: Age.cat
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To calculate a generalized linear regression model (GLM):

Biodiversity > Analysis of species as response > Species presence-absence as response…

Model options: binomial model

Response: Faramea.occidentalis

Explanatory: Age.cat

print summary

print anova

Plot options: diagnostic plots

Plot variable: Age.cat

Plot options: term plot

Plot options: effect plot

Model options: quasi-binomial model

To calculate a generalized additive regression model (GAM):

Biodiversity > Analysis of species as response > Species presence-absence as response…

Model options: binomial model

Response: Faramea.occidentalis

Explanatory: s(Precipitation) + Geology + Age.cat + s(Elevation)

print summary

To calculate a GLM with several explanatory variables:

Biodiversity > Analysis of species as response > Species presence-absence as response…

Model options: binomial model

Response: Faramea.occidentalis

Explanatory: Precipitation + I(Precipitation^2) + Geology + Age.cat + Elevation + 
I(Elevation^2)

print summary

print anova
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Doing the analyses with the command options of Biodiversity.R 
Load the datasets Condit species.txt and Condit environmental.txt. Give them the names “spec” and 
“faramea”. Alternatively, load the dataset Faramea.txt and give it the name “faramea”.

spec <- read.table(file=”D://my files/Condit species.txt”)
attach(spec)
faramea <- read.table(file=”D://my files/Condit environmental.

txt”)
faramea <- read.table(file=”D://my files/Faramea.txt”)
attach(faramea)

To analyse presence or absence by cross-tabs:

faramea$Faramea.occidentalis<<- spec$Faramea.occidentalis
table1 <- table(Faramea.occidentalis>0, Age.cat)
Presabs.1 <- chisq.test(table1)
Presabs.1
Presabs.1$observed
Presabs.1$expected

To calculate a generalized linear regression model (GLM):

Presabs.model2 <- glm(formula = Faramea.occidentalis>0 ~ 
Age.cat, family = binomial(link=logit), data = faramea, 
na.action = na.exclude)

summary(Presabs.model2)
anova(Presabs.model2,test=’F’)
predict(Presabs.model2, type=’response’, se.fit=T)
null.model <- glm(formula = Faramea.occidentalis>0 ~ 1, 

family = binomial(link=logit) , data = faramea, na.action = 
na.exclude)

anova(null.model, Presabs.model2, test=’Chi’)
plot(Presabs.model2)
termplot(Presabs.model2, se=T, partial.resid=T, rug=T, 

terms=’Age.cat’)
plot(effect(‘Age.cat’, Presabs.model2))
Presabs.model3 <- glm(formula = Faramea.occidentalis>0 ~ Age.

cat, family = quasibinomial(link=logit) , data = faramea, 
na.action = na.exclude)

Presabs.model4 <- glm(formula = Faramea.occidentalis>0 ~ 
Elevation, family = quasibinomial(link=logit) , data = 
faramea, na.action = na.exclude)
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To calculate a generalized additive regression model (GAM):

Presabs.model5 <- gam(formula = Faramea.occidentalis>0 ~ 
s(Precipitation) + Geology + Age.cat + s(Elevation), family 
= quasibinomial(link=logit) , data = faramea, na.action = 
na.exclude)

summary(Presabs.model5)

To calculate a GLM with several explanatory variables:

Presabs.model6 <- glm(formula = Faramea.occidentalis > 0 ~ 
Precipitation + I(Precipitation^2) + Geology + Age.cat + 
Elevation + I(Elevation^2), family = binomial(link = logit) 
, data = faramea, na.action = na.exclude)

summary(Presabs.model6)
anova(Presabs.model6,test=’Chi’)
drop1(Presabs.model6, test=’Chi’)
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CHAPTER 8

Analysis of differences in 
species composition

Analysis of differences in species 
composition
This chapter describes how the difference in species 
composition can be investigated by calculating 
the ecological distance between two sites. The 
methods can be applied to an entire species matrix 
by calculating ecological distances between all 
pairs of sites. 

The results can be presented as a distance or 
dissimilarity matrix. In later chapters on clustering 
and ordination, some methods are shown for 
analysing such distance matrices.

Figure 8.1  Four sites with different 
species composition. The differences 
in species composition between each 
subset of two sites can be expressed 
by a single ecological distance such 
as the Bray-Curtis distance. The Bray-
Curtis distance between A and B is 
0.25, and between A and C it is 0.33.

How can differences in species 
composition be investigated?
This chapter describes some methods for measuring 
the difference in species composition between 
two sites. Rather than stating the difference in 
abundance between each and every species, a single 
statistic is calculated that expresses the difference 
in species composition. Consider Figure 8.1 as an 
example. You could report that site A and B share 
the same species S1, S2 and S3 with the same 
abundance, whereas species S4 and S5 only occur 
on site B. An ecological distance will summarize 
these differences in a single distance statistic. In 
the case of the Bray-Curtis distance (there are 
many different methods of calculating a distance), 
you would calculate that the difference between 
site A and B is 0.25. 
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The advantage of using an ecological distance 
is that differences in species composition can 
be summarized with a single statistic. The 
disadvantage of using an ecological distance is that 
information on the identities of the species is not 
available any longer. For some research objectives, 
loosing information on species identities does 
not pose problems, whereas other equally valid 
objectives require that information is available on 
the species identities. We will see in chapter 10 that 
species identities can be added to an ordination 
diagram, although many ordination methods use 
distance matrices. If you are interested in fully 
exploring how abundance or presence-absence of 
particular species changes in between sites, then 
you need to conduct a separate analysis for each 
species (chapter 6 and 7).

Ecological distance
A good ecological distance describes the difference 
in species composition. For sites that share most 
of their species, the ecological distance should be 
small. When sites have few species in common, 
the ecological distance should be large. There is 
no single way to define ecological distance. The 
literature lists a large number of distances. We 
only present a subset of the possible distances. 
These are among the most common distances 
that are used for analysing differences in species 
composition. 

Distance matrices
Distance matrices provide information on the 
ecological distance between all pairs of sites within 
your data. Table 8.1 provides one of the possible 
distance matrices that can be calculated from the 
dune meadow dataset.

The cells in the distance matrix contain the 
distance between the sites indicated by the column 
and row names. As the species composition is 

exactly the same when you compare a site with 
itself, its ecological distance is zero. Also the order 
in which you make the comparison does not 
matter: the distance between X1 and X2 is the 
same as that between X2 and X1.

Euclidean distance
The Euclidean distance is calculated by using each 
species as a different axis to plot each site and 
then measuring the distance between the sites (see 
Figure 8.2). Formulae for calculating the Euclidean 
distance and other distances are provided in Box 
8.1 (page 129).

The Euclidean distance is not a good ecological 
distance if it is used on raw species matrices 
– matrices that contain the abundance of each 
species on each site. When the species matrix 
is modified by a particular transformation (see 
below: standardizations of the species data 
before calculating the distance matrix), then the 
Euclidean distance becomes better at expressing 
ecological distance.

The following example illustrates that the 
Euclidean distance on the raw species matrix 
will not always describe ecological distance 
well. Imagine that you recorded the following 
abundances for 3 species for 3 sites:

Site Species 1 Species 2 Species 3
A 1 1 0
B 5 5 0
C 0 0 1

You can see that sites A and B have the same 
species, whereas site C has a different species.
When we calculate the Euclidean distance, then 
we obtain the following distance matrix: 

         A        B        C
A        0 5.656854 1.732051
B 5.656854        0 7.141428
C 1.732051 7.141428        0
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One feature of our distance matrix is that 
information about the original species is not 
longer present – the distance matrix does not 
mention Species 1, Species 2 or Species 3 
anywhere. Some textbooks mention in this case 
that the analysis is in Q-mode rather than in R-
mode.  This simply means that differences in sites 
are being investigated (differences between the 
rows of the species matrix) rather than differences 
in species (differences between the columns of 
the species matrix) – but remember that the 
differences were actually derived from differences 
in species composition. Since ecological datasets 
often contain more species than sites, the distance 
matrix will often be of smaller size than the species 
matrix.

Because of the properties of distance matrices 
that the distance between the same sites is zero 
and that the order of calculating the distance does 
not matter, a distance matrix can be summarized 
with no loss of information as:

         A        B
B 5.656854         
C 1.732051 7.141428

You can see in the distance matrix that the 
distance between A and C is about 1.7, whereas 
the distance between A and B is roughly 5.7. But 
remember now that A and C do not share any 
species, whereas A and B have the same species. 
The Euclidean distance depends greatly on the 
abundances of each species, not just which species 
are shared. A and B are far apart using Euclidean 
distance because A has 2 plants and B has 10. 
However in most applications we would like to 
give more emphasis to the extent to which species 
are shared and give more weight to differences 
in composition than abundances of the same 
species.

Although the Euclidean distance is not a very 
good distance for investigating how species 
are shared between sites, it is still used in some 
ordination and clustering techniques as these only 
allow for this distance.

The fact that the Euclidean distance is not a 
good distance for all situations also constrains 
one graphical method of representing differences 
in species composition. Each species can be 
represented by one axis. Sites can then be plotted 
by using the abundance of each site as coordinates. 
For our example, we could graphically represent 
our sites as in Figure 8.2.

Figure 8.2  By using each species as an axis, you can position sites on a plot that reveals their ecological distance.
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When you measure the straight line distance 
between the sites in Figure 8.2, you will obtain the 
Euclidean distance. You can see again that site A is 
closer to C than to B.

One of the solutions to give greater weight to 
differences in composition and still to use the 
Euclidean distance is to calculate species proportions 
first and then calculate the Euclidean distance (see 
below: standardizations of the species data before 
calculating the distance matrix). Another method 
would be to use presence-absence, transforming 
all non-zero abundance values to 1. The Euclidean 
distance is then the same as a count of the number 
of species that occur in one site but not both. The 
solution that is more commonly used is to adopt 
another method of calculating distance as shown 
in the next section.

Other distances
Distances can be classified in various ways. One 
classification method can be by the range of 
output values that can be expected.

Some distances are restricted to be within the 
range of zero to one. When the distance is zero, 
two sites are completely similar for every species. 
When the distance equals 1 they are completely 
dissimilar, which means that they do not share 
any species. The Bray-Curtis distance (or Odum 
distance, or the one-complement of the Steinhaus 
similarity) and Kulczynski distance fall within 
this category.

When we calculate the Bray-Curtis distance for 
the dataset that we described earlier, we obtain:

          A         B
B 0.6666667  
C 1.0000000 1.0000000

Similarly, for the Kulczynski distance, we 
obtain:

    A   B
B 0.4  
C 1.0 1.0

You can see now that the distance of site C from 
the other sites is 1. This indicates that site C does 
not share any species with the other sites. If site C 
shared any species with the other sites, then the 
distance would be smaller than 1. The distance 
between A and B is smaller, which is what we 
wanted since we know that these sites share some 
species.

Another thing that you can observe is that you 
obtain different values for the distance between A 
and B when using the Bray-Curtis distance and 
when using the Kulczynski distance. You are thus 
faced with having to make a choice of a particular 
distance as different results are obtained. Although 
there are some methods for comparing distances 
(see below: choice of a distance), you will in 
general need to make a prior choice of the distance 
that you want to use.

The Bray-Curtis and Kulczynski distances are 
calculated from differences in abundance of each 
species. Because of this calculation method, the 
final distance will be influenced more by species 
with largest differences in abundances. When 
some species are dominant in your dataset (for 
example that one species has 90% of differences 
in abundance among sites), the Bray-Curtis and 
Kulczynski distances will mainly reflect differences 
for those species only. For this reason, some 
researchers prefer to transform the species matrix by 
a square-root, double square-root (fourth-root) or 
logarithmic transformation (see chapter 2), so that 
dominant species will influence the analysis less.

Some other distances will not be constrained 
to a maximum value of one, but can have larger 
distances. The Euclidean distance is one of those 
measures. Other distances of this category that 
are better in representing differences in species 
composition include the Hellinger and the Chi-
square distance. Both depend on differences 
in proportions of species between the two sites. 
The Chi-square distance is actually not that 
good for species data, but it is the distance that 
is used in some common ordination methods 
(see chapter 10). The Hellinger distance will 
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normally perform better (be a better reflection of 
ecological distance) than the Chi-square distance. 
Both the Chi-square and Hellinger distance will 
be influenced differently by the species with 
smaller abundances than by the species with larger 
abundances. Some researchers find this a feature 
that is not desirable, since species with smaller 
abundances are usually not well sampled and 
species with smaller abundances often contribute 
more to the Chi-square and Hellinger distances. We 
would expect that species with larger abundances 
are better sampled, and express differences among 
sites better. This could be a reason to opt for the 
Bray-Curtis or Kulczynski distance.

The results for the example that we used earlier 
are for the Hellinger distance:

         A        B
B 0.000000         
C 1.414214 1.414214

For the Chi-square distance, we obtain:

             A        B
B 1.570092e-16         
C     3.752777 3.752777

One thing that we can observe immediately is 
that the distance between A and B is 0 (with a 
small calculation difference for the Chi-square 
distance). This means that they share exactly 
the same species, and that the proportions of 
each species are the same (0.5 in this example). 
Distances with C are also exactly the same for sites 
A and B. The Chi-square and Hellinger distances 
calculate different values, so this means again that 
you will need to choose which measure to use (but 
see below: choice of a distance measure).
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Box 8.1 How to calculate ecological distance?                                    
        

We will calculate the ecological distance between sites A and C of Figure 8.1. Site A has three 
species (S1, S2 and S3) each with 1 tree, whereas site C has 4 trees of species S1, 1 tree of S2 and 
1 tree of S3. In the formulae, the abundances of the species of site A are indicated by a1, a2 and 
a3, and the abundances of the species of site C are indicated by c1, c2 and c3. If a species does not 
occur on a specific site, it should be listed for the site with abundance = 0.

The formulae for calculating the ecological distances are:

Bray-Curtis: 

  
Kulczynski:   

Euclidean:   

Chi-square:   

Hellinger:   

For the Bray-Curtis distance, inserting the abundances for each species in the formula gives:

 
Note that use of the functions within Biodiversity.R will directly calculate the distance. 
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Some distances only look at differences in presence 
or absence of a species. Some of these distances 
measures are the Jaccard and Sorenson distance. 
These also fall into the category of the indices 
that are constrained within the 0-1 interval. The 
Sorenson distance is actually the Bray-Curtis 
when the species matrix has been transformed to 
presence-absence or 1/0. These distances are not 
influenced by differences in species abundance 
between samples, so that species that have larger 
abundances will not carry a larger weight in the 
analysis. Often however, this is not a characteristic 
that you want in your analysis – observing just 
one individual may not mean very much, whereas 
observing many individuals on one site and 
none on another site may be much less likely to 
be by random chance only. As calculation time 
with modern computers can be short, you could 
actually test whether abundance and presence-
absence data result in the same patterns when you 
analyse your data.

Standardizations of the species 
data before calculating the 
distance matrix
Except for presence-absence data, differences 
in abundances among species will influence the 
calculation of the distances. This is a desirable 
characteristic of some distances, but for some 
datasets that are strongly dominated by a few 
species this may cause a constraint. When most 
of the abundance is taken by a few species, the 
distance may only express the differences of sites 
for this small subset of species. In such cases, you 
could diminish the influence of strongly dominant 
species by first taking logarithms, taking square-
root, whereas some scientists have even advocated 
taking 4th roots of all the values in your data. As 
the typical species matrix contains many zeroes, 
you would need to take a log(n+1) as described in 
chapter 2. 

You can have a similar effect of a strong dominance 
in your dataset by sites that contain a larger number 
of individuals. An approach that standardizes 
each site to the same abundance is to divide cell 
abundance by the total abundance for each site (so 
that species sum up to 1 for each site). When you 
use this method, you will compare differences in 
species proportions for each site. For example, for 
our original dataset, the species matrix with the 
proportions will be:

Site Species 1 Species 2 Species 3 Total
A 0.5 0.5 0 1
B 0.5 0.5 0 1
C 0 0 1 1

You can now see that site A and B have exactly 
the same values as differences in total abundance 
are not longer there. The data of the species 
proportions for each site have been described as 
species profiles in some texts. By investigating 
species profiles, you are sure that differences in 
total abundance among sites will not influence 
the results. When looking at the results shown 
in Figure 8.1, you could have noticed that an 
ecological distance of 0.33 was calculated between 
sites A and D by the Bray-Curtis distance, 
although both sites contain the same species and 
the same proportions of each species. If the species 
matrix would have been standardized, then the 
ecological distance between sites A and D would 
have become 0. 

It is your choice to determine whether ecological 
distance should reflect the raw abundances (and 
thus also differences in site totals) or species 
proportions. When you opt to standardize the 
species matrix, you could investigate differences 
in total abundance among sites by the regression 
techniques described in an earlier chapter as an 
additional analysis. Dividing by the site total has 
the added advantage that some distances will now 
provide you with similar outcomes. For example, 
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the results for the Bray-Curtis and Kulczynski 
distances will be the same for species profiles.

Some standardizations of the species data have 
the feature that when the Euclidean distance 
is calculated from the standardized data, this 
distance will be a more suitable ecological distance 
for the original dataset. Such standardization 
approaches have been described for the distance 
between species profiles, the Hellinger distance, 
the Chi-square distance and the chord distance 
(Legendre and Gallagher 2001). For example, if 
we calculate the Euclidean distance for the matrix 
with proportions (species profiles), then we obtain 
the following distance matrix: 

         A        B
B 0.000000         
C 1.224745 1.224745

You can verify that site A is closer to B than to 
C. Remember that the Euclidean distance matrix 

for the original data shown in the beginning of 
this chapter indicated that site A was closer to C 
than to B, which was not a preferred method of 
indicating differences in species composition.

Choice of a distance measure
One desirable characteristic of an ecological 
distance could be that sites that do not share any 
species are all given the same maximum distance. 
The distances that we described here that have this 
property are the Bray-Curtis and the Kulczynski 
distances. They should thus be preferred for 
analysing differences in species composition 
according to this criterion. 

The behaviour of a distance can be analysed 
with artificial datasets. Imagine for instance 
that you have 10 sites with the following species 
abundances: 

Species 1 Species 2 Species 3 Species 4 Species 5 Site index

Site 1 7 1 0 0 0 1
Site 2 4 2 0 1 0 2
Site 3 2 4 0 1 0 3
Site 4 1 7 0 0 0 4
Site 5 0 8 0 0 0 5
Site 6 0 7 1 0 0 6
Site 7 0 4 2 0 2 7
Site 8 0 2 4 0 1 8
Site 9 0 1 7 0 0 9
Site 10 0 0 8 0 0 10
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Figure 8.3  Artificial dataset with the abundance of 5 species for 10 sites.

For this artificial dataset, we arranged sites in the 
sequence of 1-10 (site index) based on ecological 
similarities between the sites, an ordering that 
reflects the ‘smooth’ changes in species abundance 
from site 1 as displayed in Figure 8.3. These 
changes are related to unimodal patterns in 
species abundances that are often observed in 
surveys. You can see that the abundance of one 
species (O) decreases compared to site 1, whereas 
abundance increases and then diminishes for 

another species (∆). The particular sequence of 
the sites that is shown (the site index) is the only 
sequence that provides such smooth changes. 
The resulting smooth patterns show that the site 
index is an intuitively appealing ordering - every 
ecological distance provides a particular rank 
order that reflects certain assumptions. When we 
calculate the ecological distance from site 1 to 
the other sites, then we obtain the results that are 
shown in Figure 8.4. The horizontal axis shows 

Figure 8.4  Ecological distances from the first site with the other sites of Figure 8.3.
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the differences in position on the horizontal axis 
of Figure 8.3. This distance is the distance on a 
hypothetical gradient that is best related to changes 
in species composition.

You can see that the increments are monotonic 
(never decreasing) for the Bray-Curtis, Kulczynski 
and Hellinger distances. For the chi-square 
distance, the pattern fluctuates from the fourth 
site onwards. Although our impression of distance 
on the horizontal axis keeps increasing, the 
ecological distance does not always increase. This 
is the reason why we do not prefer the chi-square 
distance since we prefer distances that respect 
the order in which we arranged the sites. In this 
example, we prefer the other distances as they 
show monotonic relationship with the preferred 
arrangement of sites.

Another way in which the artificial dataset 
can be analysed is by comparing the ecological 
distance matrix with a gradient distance matrix. 
The gradient distance matrix is calculated from 
all the differences between the sites on the x axis 
(the gradient axis). In this matrix, the difference 
between site 1 and 5 equals 4, and the difference 
between site 3 and 5 equals 2. A summary statistic 
that can be calculated is the correlation between 
the values of the ecological distance matrix 
and the values of the gradient distance matrix. 
The significance level for the test that the real 
correlation could equal zero is calculated with a 
Mantel test. When you conduct a Mantel test for 
the Bray-Curtis distance for the artificial dataset, 
then you will obtain the following result:

The results show that correlation is high (r = 
0.833) and that the significance level for the test 
of zero correlation is low (P < 0.001). This means 
that we have evidence for large correlation among 
the values of the gradient and ecological distance 
matrices, reflecting what we see in Figure 8.3. 

Although analysis of artificial datasets (such 
as the one provided above) have shown that the 
Bray-Curtis and Kulczynski distances are good 
at reflecting the intuitive ordering of sites, these 
distances suffer from a problem that they are 
not metric, which can cause some problems in 
subsequent analyses. Being metric means that the 
distance between sites A and C is smaller or equal 
to the sum of the distance between A and B and 
the distance between B and C. When distances 
are metric, you could construct a triangle that 
represents the distances between A, B and C. Being 
metric is one requirement for the use of some 
ordination methods. Sometimes a transformation 
could help – you could for instance calculate the 
square-root of the Bray-Curtis distance if the Bray-
Curtis itself are not metric for your data. Often the 
square-root of distances will be metric. Another 
choice that you have is to use a metric distance 
that also performs well for artificial datasets, such 
as the Hellinger distance.

Mantel statistic based on Pearson’s product-moment correlation 

Mantel statistic r: 0.833 
      Significance: < 0.001 

Empirical upper confidence limits of r:
  90%   95% 97.5%   99% 
0.219 0.281 0.338 0.406 

Based on 1000 permutations
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Comparing a distance matrix with 
differences for an environmental 
variable
The relationship between a distance matrix and a 
quantitative environmental variable can be analysed 
with a Mantel test or by a graph as shown above 
for the artificial dataset. The ecological distance 
matrix can be based on any distance measure 
discussed. Then also calculate an environmental 
distance matrix, which defines the distance 
between pairs of sites based on the environmental 
variables measured. If these are quantitative the 
Euclidean distance may be appropriate. As in many 
other situations, the graph gives much insight 
into the relationships. The Mantel test serves to 
ensure that we are not mislead by patterns arising 
by chance. Remember it is based on correlation, 
only describing linear relationships between the 
ecological and environmental distances.

For example, if we were interested in the 
relationship between species composition as 
expressed by the Bray-Curtis distance and the 
depth of the A1 horizon for the dune meadow 
dataset, then we would obtain the following result 
for the Mantel test:

Mantel statistic based on Pearson’s 
product-moment correlation 

Mantel statistic r: 0.2379 
      Significance: 0.045 

Empirical upper confidence limits of r:
  90%   95% 97.5%   99% 
0.182 0.229 0.267 0.310 

Based on 1000 permutations

Simultaneously with the Mantel test, we can plot 
the ecological distance against the environmental 
distance as in Figure 8.5.

Figure 8.5  Bray-Curtis distances in relationship with differences in depth of the A1 horizon for the dune meadow 
dataset. The line indicates the fitted relationship between the distances by GAM.
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The results show that although the significance level 
of the correlation is quite small (P =0.045), there 
is a large scatter of observations and correlation is 
low. This means that the correspondence between 
the differences in depth of the A1 horizon and the 
ecological distance is not very good.

A similar method to the Mantel test is to use 
the ANOSIM (Analysis of Similarity) test. When 
sites are classified by a categorical environmental 
variable, the method examines whether sites within 
categories are more similar than sites in different 
categories. A significance level for a test of no 
difference between categories is calculated. The R 
statistic that is calculated can be interpreted as a 
correlation coefficient: values close to 0 indicate 
little correlation with the groups, and values close 
to 1 or close to -1 indicate strong correlation. This 
statistic is unlikely to be smaller than 0 since that 
would indicate that similarities within categories 
are systematically lower than similarities among 
categories.

For example, the ANOSIM for the distance 
matrix of the dune meadow dataset based on the 
Kulczynski distance and for management gives the 

following result:

anosim(dis = ecology.distance, grouping 
= Management) 
Dissimilarity: kulczynski 

ANOSIM statistic R: 0.2397 
      Significance: 0.016 

Based on  1000  permutations

Also similar to the procedure for a quantitative 
variable, we can plot the ecological distance against 
the environmental distance as in Figure 8.6. To 
express environmental distance, we calculate 
a distance of 0 if both sites have the same type 
of management (for example if both sites are of 
category hobby farming), and a distance of 1 if 
both sites have a different type of management 
(for example, one with hobby farming and one 
with standard farming). This method of expressing 
distance for categorical variables is the Gower 
distance. When the environmental variable 
is a categorical variable, you can also conduct 
the Mantel test by using the Gower distance to 
calculate the environmental distance matrix.

Figure 8.6  Kulczynski distances in relationship with differences in management for the dune meadow dataset.
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The ANOSIM test and Figure 8.6 show that 
there is evidence for a relationship between the 
ecological distance and the type of management, 
but that the relationship is not very strong. We can 
observe several cases that have the same type of 
management but have a large ecological distance. 
We can also observe several cases that have a 
different type of management but have a small 
ecological distance. This pattern is summarized by 
the low ANOSIM statistic of 0.24.

In many situations it will be better to use a 
constrained ordination technique (see Chapter 
10) to investigate the influence of environmental 
variables on species composition since these 
techniques provide a more comprehensive result. 
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Doing the analyses with the menu options of Biodiversity.R
Select the species and environmental matrices:

Biodiversity > Environmental Matrix > Select environmental matrix

Select the dune.env dataset

Biodiversity > Community matrix > Select community matrix

Select the dune dataset

Calculating distance matrices:
Biodiversity > Analysis of ecological distance > Calculate distance matrix…

Distance: bray

Transformations of the species data:
Biodiversity > Community matrix > Transform community matrix…

Method: Hellinger

Biodiversity > Analysis of ecological distance > Calculate distance matrix…

Distance: Euclidean

Calculating the rank-correlation with the mantel test
Biodiversity > Analysis of ecological distance > Compare distance matrices…

Type of test: mantel

Community distance: kulczynski

Environmental distance: euclidean

Environmental variable: A1

Correlation: kendall

Calculating the ANOSIM test
Biodiversity > Analysis of ecological distance > Compare distance matrices…

Type of test: anosim

Community distance: kulczynski

Environmental variable: Management
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Doing the analyses with the command options of Biodiversity.R 
Calculating distance matrices

euclidean.distance <- vegdist(dune,method=”euclidean”)

euclidean.distance

bray.distance <- vegdist(dune,method=”bray”)

bray.distance

Transformations of the species data

community.hel <- disttransform(dune, method=’Hellinger’)

hellinger.distance <- vegdist(community.hel, 
method=”euclidean”)

Calculating the rank-correlation with the mantel test

envir.distance <- vegdist(dune.env$A1, method=”euclidean”)

ecology.distance <- vegdist(dune, method=”kul”)

mantel(envir.distance, ecology.distance, ”kendall”)

plot(envir.distance, ecology.distance)

Calculating an ANOSIM test

ecology.distance <- vegdist(dune, method=”kul”)

anosim(ecology.distance, dune.env$Management)
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CHAPTER 9

Analysis of ecological distance 
by clustering

Analysis of ecological distance by 
clustering
This chapter describes how information from 
distance matrices – expressing differences in 
species composition among sites – can be used 
to group sites. The aim is to put sites which have 
similar species compositions into the same group. 
The groups are known as clusters and the methods 
for finding them are known as clustering methods. 
The results of a cluster analysis might be used to 
describe the different vegetation types within your 
study area, for example prior to mapping them or 
investigating management options for each type.

Many different clustering methods and 
algorithms exist. There is no single way to decide 
which is ‘best’. Hence results are somewhat 
subjective – they may depend on the choice of 
methods used, with little to guide that choice. 

Figure 9.1 (a)  A cluster analysis will 
group the sites into several clusters 
based on the ecological distance between 
them. The same four sites and ecological 
distance (Bray-Curtis) were used as in 
Figure 8.1.

The results should therefore be seen as ‘ways of 
viewing the data’, rather than definitively showing 
real biological structure. One way you can reduce 
the subjective nature of results is to try a range of 
different methods and see if the results are similar 
for each.

What is cluster analysis?
A cluster analysis arranges the sites into groups. 
Clusters are formed of sites that are similar in 
species composition, as measured by a chosen 
ecological distance. Cluster analysis provides a 
summary of the similarity in species composition 
of various sites. Sites that are grouped into the same 
cluster are more similar in species composition 
than sites that are grouped into different clusters 
(Figure 9.1).



140     CHAPTER 9

Figure 9.1 (b) The cluster algorithm 
(average linkage hierarchical 
clustering) grouped the two sites at 
the top in one cluster and the two sites 
at the bottom in a second cluster. The 
information that sites A and B (top) 
belong to cluster 1 and that sites C 
and D (bottom) belong to cluster 2 is 
a summary of the ecological distance 
among the sites. Distances in the 
figure are the distance within clusters 
and the average of the pairwise 
distances between clusters.

Hierarchical clustering methods

Hierarchical clustering methods do not only cluster 
sites, but also cluster the various clusters that were 
formed earlier in the clustering process. Hierarchical 
clustering methods thus provide a hierarchy for 
the similarity of sites. For example, the clustering 
method may tell you that cluster A and cluster B 
are more similar than a cluster A and C or a cluster 
B and C. Cluster A and B will then be joined into a 
cluster D. At a later stage in the clustering process, 
cluster D is then merged with cluster C.

Agglomerative clustering algorithms start by 
treating each site as a cluster of 1. The closest two 
clusters are joined to form a new cluster. Now 
we have a new set of clusters, one of size 2 and 
the rest size 1. The closest pair of this new set is 
merged in the next step of the clustering process. 
The clustering process continues until one cluster 
has been formed that contains all the sites.

The process can be imagined as proceeding over 
a range of distances from 0 to some maximum 
value (see chapter 8 on ecological distance). 
Gradually during the process, the distance 
considered is increased. At the beginning of 
the process, the method looks for the smallest 
distance in the distance matrix. At this step, the 
two sites that have this distance are placed in the 
same cluster. Next in the process, larger distances 
are considered – these could either be distances 
between clusters that were formed earlier, or 
distances with sites that were not included in any 
cluster yet.

The following example could make this process 
clearer. We generated a hierarchical clustering for 
the dune meadow dataset, using a single linkage 
algorithm. The distance matrix was calculated 
by using the Bray-Curtis distance (only part of 
the distance matrix is listed, the entire distance 
matrix is provided in Chapter 8):
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       X1    X2    X3    X4    X5    X6    X7    X8    X9   X10   X11   X12   X13
X2  0.467                                                               
X3  0.448 0.341                                                           
X4  0.524 0.356 0.271                                                
X5  0.639 0.412 0.470 0.500                                                         
X6  0.636 0.511 0.568 0.634 0.297                   
X7  0.552 0.439 0.475 0.506 0.229 0.227                     
X8  0.655 0.537 0.325 0.412 0.639 0.591 0.525                  
X9  0.600 0.476 0.341 0.379 0.506 0.600 0.488 0.317      
X10 0.574 0.294 0.470 0.477 0.349 0.319 0.277 0.542 0.600     
X11 0.560 0.541 0.556 0.584 0.627 0.450 0.444 0.528 0.595 0.413 
X12 0.925 0.714 0.440 0.525 0.692 0.639 0.627 0.440 0.351 0.718 0.672  
X13 0.843 0.600 0.425 0.513 0.684 0.753 0.644 0.370 0.413 0.737 0.754 0.353 
X14 1.000 0.788 0.750 0.797 0.881 0.806 0.875 0.562 0.758 0.761 0.821 0.695 0.649  
                                  

The clustering algorithm reported following 
sequence of additions:

Merge:
      [,1] [,2]
 [1,]   -6   -7
 [2,]   -5    1
 [3,]   -3   -4
 [4,]   -2  -10
 [5,]  -15  -20
 [6,]   -8   -9
 [7,]  -11  -18
 [8,]    5  -16
 [9,]  -12  -13
[10,]    3    6
[11,]    4    2
[12,]   10    9
[13,]  -14    8
[14,]   11    7
[15,]  -17  -19
[16,]   14   12
[17,]   -1   16
[18,]   17   15
[19,]   18   13

This output shows how sites or clusters were 
merged in a hierarchical sequence of 19 steps, 
indicated between the square brackets. At the 
first step, the sixth (X6) and the seventh (X7) site 
were joined. These are labelled -6 and -7 in the 
output. When you check the distance matrix, then 
you can see that these two sites have a distance of 
0.227, the smallest value of all pairwise distances 
(indicated in bold in the distance matrix). In 
the second step, the first cluster (labelled 1) was 
merged  with the fifth site (X5, labelled -5) at a 
distance of 0.229 (distance of X5-X7). In the third 
step, a new cluster is formed by joining X3 and 
X4 at a distance of 0.271. The clustering process 
continues until finally all clusters are joined. In 
case a number has no "-" sign, then this indicates 
that clusters are joined that were formed at earlier 
steps with the actual numbers indicating the step. 
For instance, in the last step (step 19), clusters 
formed in steps 18 and 13 are merged. 
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There are many ways by which the decision can 
be made to join clusters. The evaluation is done 
at a particular level of ecological distance. These 
ways include:

• Joining clusters when 2 members of different 
clusters have the ecological distance level. This 
is called nearest neighbour or single linkage 
clustering.

• Joining clusters when all members of different 
clusters have the ecological distance level or a 
smaller value. This is called farthest neighbour 
or complete linkage clustering.

• Joining clusters based on the average distance 
between all the members. This is called average 
linkage clustering. An alternative name is 
UPWGA, which stands for Unweighed Pair-
Wise Group Average. There is a variant by 
which a larger cluster is downweighted.

• Joining clusters based on the distance of the 
centroids (central positions) of clusters. It is also 
possible to use a weighted method, by which 
the size of the clusters is considered, and the 
algorithm favours merging of larger clusters.

• Joining clusters based on maximizing the 
differences among clusters and minimizing 
the differences within clusters. This method is 
called the Ward’s minimum distance algorithm. 
This method can only use a matrix based on the 
Euclidean distance. With a proper transformation 
(see chapter 8), we could however investigate 
other distances than the Euclidean distance such 
as the Hellinger or Chi-square distance.

The various options usually result in different 
allocation levels of sites to clusters. It can also 
happen that the hierarchy of clustering changes. 
An example of this phenomenon is provided 
below (Figure 9.2).

The clustering results can be portrayed by a 
dendrogram or clustering tree. This dendrogram 
shows the level where clusters were joined together, 
and the sites within each cluster.

The graphs in Figure 9.2 show the dendrograms 
for average, single and complete linkage for the 
dune meadow dataset. The graph for the average 
linkage corresponds to the written information 
given earlier on the clustering process.
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Figure 9.2  Dendrograms for different clustering methods.
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From the dendrograms, you can observe some 
differences in the ways by which clusters are 
added. For example, sites X2 and X10 at the left-
hand side of the histogram are added together in 
one cluster first in complete linkage. For single 
linkage, X10 is first added to the cluster that 
already contains X5, X6 and X7, and later X2 is 
added to this cluster. The dendrogram suggests 
that the similarity between X10 and X5 is about 
0.5 for complete linkage, whereas it is less than 0.3 
for single linkage. 

When you study the differences between single, 
average and complete linkage in greater detail, you 
will notice that single linkage provides step-by-
step addition of clusters so that you obtain a kind 
of stairway pattern. Complete linkage on the other 
hand resulted more in a pattern of fixed levels at 
which various clusters were joined, followed by 
distance levels without any merging of clusters.

It is important that you realize that the 
dendrograms only show at which ecological 
distances clusters are formed (‘height’ in the 

figures). Dendrograms do not show relationships 
between members of the various clusters, but only 
the relationship between the clusters as a whole. In 
Figure 9.2 the results for the complete linkage do 
not show that site X7 is closer to X3 (put directly 
right) than to X17 (put at the right-hand side of 
the dendrogram). The dendrogram could equally 
well have been drawn with X3 and X17 exchanged.  
You could see dendrograms as children’s mobiles 
that can be flipped on each vertical branch, the 
right and left hand sides interchanged. Thus we 
could have drawn the same diagram with X1 
somewhere in the middle, rather than at the left 
hand side. A very large number of dendrograms 
can be produced that provide the same clustering 
information. 

Divisive hierarchical clustering methods start 
at the top of the clustering dendrogram by first 
splitting a cluster containing all sites in several 
clusters. The process continues at smaller distances 
until the last cluster of 2 sites is split.

Figure 9.3 shows a divisive clustering of the dune 
meadow dataset using the Bray-Curtis distance.

Figure 9.3  Dendrogram for a divisive clustering of the dune meadow dataset based on the Bray-Curtis distance.
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In Figure 9.3, you see that X2 and X10 are 
only joined at a distance of about 0.8, whereas 
in Figure 9.1 they joined at about 0.3. Divisive 
clustering can thus yield quite different results 
from agglomerative methods.

These differences in results from different 
methods limit the value of clustering. However, 
when there are clear actual clusters in your 
dataset, the various methods will result in the 
same patterns. When your dataset contains more 
gradual changes in ecological distance among sites 
(as seems to be the case for the dune meadow 
dataset), the different methods will yield different 
results. Often we would expect species variation 
to follow a number of gradients rather than 
distinct classes. Ordination methods are then 
more appropriate than clustering methods. Note 
that clustering methods are not appropriate for 
describing differences or data structure that you 
know, or expect, to exist. For example, if the sites 
come from three different land uses, clustering 
methods should not be used to find the differences 
in species composition between them.

Another reason that clustering may not be used 
is that the dendrogram becomes too dense when 
you have a large number of sites. However, in such 
cases, also ordination methods (see chapter 10) 
may yield graphs of high density.

Cophenetic correlation
We mentioned above that clustering methods 
group sites in clusters based on their ecological 
distance, but that the clustering results show the 
ecological distance among clusters rather than 
among all the sites. You can evaluate how well the 
ecological distance among the sites is portrayed by 
the clustering results by calculating the cophenetic 
correlation. The cophenetic correlation is the 

correlation between the distances of the original 
distance matrix with the cophenetic distances. 

The cophenetic distance is the distance at which 
clusters are combined in a dendrogram. In the 
example that we gave at the beginning of this 
chapter, a first cluster was formed by joining sites 
X6 and X7 at a distance of 0.227. In the second 
step, the {X6, X7} cluster was joined with site X5 
at a distance of 0.229. The cophenetic distance 
between X5 and X6 and between X5 and X7 
is therefore 0.229. This cophenetic distance is 
compared with the actual distances of 0.297 (X5-
X6) and 0.229 (X5-X7).

If the cophenetic correlation is large, then the 
distance portrayed in the dendrogram is a good 
representation of distances between individual 
sites. The lower the cophenetic correlation, the less 
representative the clustering results will be of the 
pairwise differences. The cophenetic correlation for 
the average, single and complete linkage clustering 
of the dune meadow dataset discussed earlier are 
0.82, 0.66 and 0.67, respectively. This means that 
in this example average clustering provides the 
best representation of pairwise differences.

As we mentioned for the Mantel and ANOSIM 
tests in Chapter 8, it is good data analysis practice 
to expand the investigation of the correlation to 
a graph that plots the relationship between the 
two distances by plotting all the observations. 
Figure 9.4 shows the correspondence between the 
original distance and the cophenetic distance for 
the average linkage of the dune meadow dataset. 
The horizontal pattern occurred because the 
cophenetic distance is calculated where clusters 
are joined together. You can see that the average 
linkage provides a good representation of the 
original distance – many points are close to the 
diagonal. Other points are farther apart from 
the diagonal line, so distance in the dendrogram 
differs more from the original distance. 



146     CHAPTER 9

Figure 9.4  Correspondence between the original distances and the cophenetic distances for average linkage for the 
dune meadow dataset using the Bray-Curtis distance.

Selecting cluster memberships 
from hierarchical clustering
The results of a hierarchical clustering can be used 
to classify sites into groups. The classification is 
defined by choosing a certain distance level, or by 

choosing a fixed number of clusters. For instance, 
Figure 9.5 shows the grouping obtained if you 
decide that you want to classify all the sites into 
4 groups. Note that one cluster contains only one 
site (X1).

Figure 9.5  Grouping sites into 4 clusters for a dendrogram. The dendrogram is the average linkage clustering of 
Figure 9.2.
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Non-hierarchical clustering

Non-hierarchical methods divide the sample 
of sites into a pre-determined number of 
separate groups, rather than a hierarchical group 
structure.

There are various methods, including K-means, 
clara, pam and fanny. Each of these methods will 
put each sample in a cluster, but the algorithms 
differ. The K-means method can only be used 
with the Euclidean distance, whereas the other 
methods are more flexible. Table 9.1 shows the 
results of three different clustering algorithms 
used to construct 4 clusters. The agnes results (a 
hierarchical method) correspond to Figure 9.5. 
You can see from this table that most sites are put 
in different clusters by each method. The only 
cluster that is the same for the three methods is 
the cluster with sites X14, X15, X16 and X20. 
This cluster was joined at a smaller distance than 
the other clusters by agnes (Figure 9.5), indicating 
a smaller average distance between its members. 
The key pattern of Table 9.1 is that different 
methods give different results, however.

Interpretation of clustering results

The clustering results can be interpreted by 
analysing the relationship between the cluster 
membership and the data of the environmental 
matrix. You could, for example, draw a boxplot of 
the values of an environmental variable within each 
cluster, and look for differences in the boxplots. 
However, since we saw earlier that different 
clustering methods and different clustering 
options may produce different results, using 
clustering methods to investigate the influence of 
environmental variables on species composition 
has limited value. Clustering methods should 
definitely not be used in attempts to recover 
known structure in your data: since the clustering 
method is not analysing whether such structure 
exists, you can not expect that the method will 
provide such analysis. 

For analyses of the influence of environmental 
characteristics on differences in ecological distance, 
ordination methods probably offer a better 
solution, particularly when you have hypotheses 
about the relationship between environmental 
characteristics and species composition.

Site Agnes K-means Pam
X1 3 3 1
X2 1 3 1
X3 1 3 1
X4 1 3 1
X5 1 1 3
X6 1 1 3
X7 1 1 3
X8 1 2 1
X9 1 2 1
X10 1 1 3
X11 1 1 4
X12 1 2 1
X13 1 2 1
X14 2 4 2
X15 2 4 2
X16 2 4 2
X17 4 1 3
X18 1 1 4
X19 4 1 4
X20 2 4 2

Table 9.1  Partitioning of sites into four clusters for two methods of non-hierarchical clustering (K-means and pam) 
and one hierarchical clustering method (agnes) for the dune meadow dataset.
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Results from clustering can complement 
ordination, however. As we will see in the next 
chapter, the results of ordination are usually 
analysed by 2-dimensional graphs. A problem with 
these graphs could be that the distances in the 2-
dimensional graph are poorly related to the overall 
distances. It could even be that 2 sites that are close 
together in the 2-dimensional graph are actually 
separated by a large distance, and if you plotted 
a 3-dimensional graph that that might become 
apparent. To check whether this situation occurs, 
you can plot the results of a nearest neighbour 
clustering on top of the ordination, which is also 
the ‘minimal spanning tree’. An alternative would 
be to connect each site with its nearest neighbour 
for the entire distance matrix.

In brief, the clustering results provide a summary 
of the data. When you want to explore differences 
in greater detail, other techniques are better. 
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Doing the analyses with the menu options of Biodiversity.R
Select the species and environmental matrices:

Biodiversity > Environmental Matrix > Select environmental matrix

Select the dune.env dataset

Biodiversity > Community Matrix > Select community matrix

Select the dune dataset

Calculate and plot agglomerative clustering:

Biodiversity > Analysis of ecological distance > Clustering…

Cluster method: agnes

Distance: bray

Cluster options: average

Calculate and plot divisive clustering:

Biodiversity > Analysis of ecological distance > Clustering…

Cluster method: diana

Distance: bray

Calculating cophenetic correlation:

Biodiversity > Analysis of ecological distance > Clustering…

Cluster method: diana

Distance: bray

cophenetic correlation

Plot options: cophenetic

Selecting cluster membership from a hierarchical clustering:

Biodiversity > Analysis of ecological distance > Clustering…

Cluster method: diana

Distance: bray

clusters: 5

save cluster membership (you can look at the environmental matrix later)

Plot options: rectangles (first plot dendrogram1 or dendrogram2)
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Calculating non-hierarchical clusters:

Biodiversity > Analysis of ecological distance > Clustering…

Cluster method: pam

Distance: bray

clusters: 5
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Doing the analyses with the command options of Biodiversity.R 
Calculate and plot agglomerative clustering:

distmatrix <- vegdist(dune, method=’bray’)

distmatrix

Cluster.1 <- agnes(distmatrix, method=’single’)

summary(Cluster.1)

plot(Cluster.1, which.plots=2)

plot(Cluster.1, which.plots=2, hang=-1)

Cluster.2 <- agnes(distmatrix, method=’single’)

summary(Cluster.2)

Cluster.3 <- agnes(distmatrix, method=’complete’)

summary(Cluster.1)

Calculate and plot divisive clustering:

distmatrix <- vegdist(dune, method=’bray’)

Cluster.4 <- diana(distmatrix)

summary(Cluster.4)

plot(Cluster.4, which.plots=2)

plot(Cluster.4, which.plots=2, hang=-1)

rect.hclust(Cluster.1, k=5, border=’blue’)

Calculating cophenetic correlation (for hierarchical clusters):
copheneticdist <- cophenetic(Cluster.1)

copheneticdist

mantel(distmatrix,copheneticdist,permutations=1000)

plot(distmatrix, copheneticdist)

abline(0,1)

Selecting cluster membership from a hierarchical clustering:

cutree(Cluster.1,k=4)

rect.hclust(Cluster.1, k=4)
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Calculating non-hierarchical clusters:

distmatrix <- vegdist(dune,method=’bray’)

Cluster.5 <- kmeans(dune, centers=5, iter.max=100)

Cluster.5

Cluster.6 <- pam(distmatrix, k=5)

summary(Cluster.6)

Cluster.7 <- clara(distmatrix, k=5, sampsize=6)

summary(Cluster.7)

Cluster.8 <- fanny(distmatrix, k=5)

summary(Cluster.8)
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CHAPTER 10

Analysis of ecological distance 
by ordination

Analysis of ecological distance by 
ordination

This chapter presents some alternative methods 
for analysing ecological distance (differences 
in species composition among sites) to 
those introduced in the previous chapter on 
clustering.

Ordination methods geometrically arrange 
sites so that distances between them in the 
graph represent their ecological distances. The 
results of ordination are typically viewed as 2-
dimensional graphs. In these graphs, each site 
is presented. Sites that are close together in the 
graph are interpreted as being similar in species 
composition, whereas sites that are far apart in 
the graph are interpreted as containing different 

Figure 10.1(a)  An ordination analysis will produce a graph that will reflect the ecological distances between sites. 
The same four sites and ecological distance (Bray-Curtis) were used as in Figure 8.1.

species. Various numerical summaries support 
interpretation of the graphs.

In this chapter we describe both unconstrained 
ordination methods, which only use ecological 
distance, and constrained methods, which use 
environmental variables to guide the ordination.  
Some guidelines are provided at the end on choice 
of methods to use.

What is ordination?
In an ordination graph, sites are plotted so that 
distances between them in the graph reflect 
the ecological differences between them. In 
Figure 10.1, site A and site B are placed closest 
together. This reflects the smaller distance between 
these two sites. 
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Constrained and unconstrained 
ordination techniques
The ordination techniques can be divided into two 
groups: unconstrained and constrained ordination 
techniques. Unconstrained ordination techniques  
are only based on the species matrix. Constrained 
ordination techniques use information from both 
the species and the environmental matrices. The 
constrained ordination techniques attempt to 
explain differences in species composition between 
sites by differences in environmental variables. 
You can thus examine the relationship between 
environmental variables and species composition.

Principal components analysis
Principal components analysis (PCA) is one of the 
oldest ordination techniques. It provides graphs 
that show the Euclidean distance between sites. 
No other ecological distances can be investigated 
with PCA. This ordination method is not ideal 
for analysis of information on species abundances 
because of the limitations of the Euclidean 
distance for describing community differences (see 
chapter 8 on ecological distance). However, when 
the original species matrix is suitably transformed, 
then the output of a PCA can become more 
meaningful (see below: principal components 
analysis on transformed species matrices).

If you calculate the PCA for the dune meadow 
dataset, then you will obtain the following result:

Figure 10.1(b)  Sites that are closer together in the graph are more similar in species composition.
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Partitioning of variance:
                   
Total         84.12
Unconstrained 84.12

Eigenvalues, and their contribution to the variance 

              PC1     PC2    PC3    PC4    PC5    PC6    PC7    PC8   PC9  PC10
lambda    24.7953 18.1466 7.6291 7.1528 5.6950 4.3333 3.1994 2.7819 2.482 1.854
accounted  0.2947  0.5105 0.6012 0.6862 0.7539 0.8054 0.8434 0.8765 0.906 0.928
            PC11   PC12   PC13   PC14   PC15   PC16   PC17   PC18   PC19
lambda    1.7471 1.3136 0.9905 0.6378 0.5508 0.3506 0.1996 0.1488 0.1158
accounted 0.9488 0.9644 0.9762 0.9838 0.9903 0.9945 0.9969 0.9986 1.0000

Scaling 1 for species and site scores
-- Sites are scaled proportional to eigenvalues
-- Species are unscaled: weighted dispersion equal on all dimensions

Species scores

             PC1      PC2      PC3      PC4      PC5       PC6
Achmil -1.112134  0.26681  0.02811  0.54725  1.57082  0.563344
Agrsto  2.530733 -2.07559  0.55423  0.91383 -0.33687  0.208704
…
Trirep -1.071640 -0.04554 -0.55554  0.67400  0.71926  4.092156
Viclat -0.196552  0.24913  0.30824 -0.19065 -0.59315  0.571611

Site scores (weighted sums of species scores)

          PC1      PC2      PC3      PC4      PC5       PC6
X1  -0.465152 -0.08008  0.78537 -0.32939  0.11728 -0.565387
X2  -0.892957 -0.57121  0.26702 -0.28747  0.52939  0.410929
…
X19  0.152525  1.01721 -0.59824 -0.94304 -0.11906 -0.005422

X20  1.270780  0.60335  0.27190  0.20930 -0.01970 -0.219946

The interpretation of the various parts of the 
output is as follows.

The total variance is the total variance of the 
species between sites. It is the sum of the individual 
variances of each species (column) of the species 
matrix. Since PCA is an unconstrained ordination 
method, the unconstrained variance equals the 
total variance. When you calculate the variance for 
separate species, then you will get the following 
results:
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Achmil 1.5368421
Agrsto 7.2000000
Airpra 0.6184211
Alogen 6.9052632
Antodo 2.8921053
Belper 1.0815789
Brarut 3.6289474
Brohor 1.9868421
Calcus 1.5263158
Chealb 0.0500000
Cirarv 0.2000000
Elepal 5.5657895
Elyrep 4.3263158
Empnig 0.2000000
Hyprad 1.5236842
Junart 2.6210526
Junbuf 1.9236842
Leoaut 2.4315789
Lolper 7.9894737
Plalan 3.8000000
Poapra 3.4105263
Poatri 7.9236842
Potpal 0.3789474
Ranfla 1.3789474
Rumace 3.2526316
Sagpro 2.4210526
Salrep 1.9447368
Tripra 1.5236842
Trirep 3.6078947
Viclat 0.2736842

You can check that the sum of these variances 
equals the total variance in the PCA output.

Next, the eigenvalues are given. PCA is a 
technique that will create a new matrix from the 
species matrix. This new matrix has the same total 
variance as the original species matrix. The rows 
of this new matrix still correspond to the sites of 
the species matrix. The columns are new: these 
are the principal components. The eigenvalues 
show how much variance is found in each of the 
principal components.

We could have analysed differences in species 
composition by using each species as a separate 
axis in a graph. For example, Figure 10.2 shows 
a graph for the dune meadow dataset with axes 
for the two first species, using the values of the 
species matrix as coordinates to plot each site 

(see also Figure 8.2). You can notice for instance 
that site X4 has a value of 8 for Agrostis stolonifera 
and a value of 5 for Alopecurus geniculatus. 
Other sites are plotted in different positions, 
with some sites having the same position at the 
origin as these sites do not have either of the two 
species. This is an ordination graph, since sites 
that are close together are more similar in their 
composition of these two species. However, we 
only see information for two species and not for 
the remaining 28 species. Unfortunately, we can 
not produce graphs to show 30 axes at the same 
time. We are limited to graphs of 2 dimensions 
(3-dimensional graphs can be produced, but they 
are often difficult to read). 

You could see PCA as a technique that creates 
new axes (or a matrix with new columns). The 
distances between the sites will remain the same in 
the new matrix (and thus the total variance remains 
the same). The advantage of the creation of new 
principal component axes is that more variance 
will be shown for the first two new axes, than if we 
plotted two original species axis. We can thus see a 
larger fraction of the total distance between sites. 

The eigenvalues are listed in decreasing size. 
The first eigenvalue accounts for nearly 30% 
of the total variance. The first two eigenvalues 
account for more than 51% of all variance (the 
accounted cumulative variance of 0.5105 is 
provided below the second eigenvalue), and the 
first three eigenvalues account for more than 60% 
of variance. Thus, if we plot the positions on the 
first two new column variables (similar to the 
creation of Figure 10.3), we will see 51% of the 
variance in distances between sites. The maximum 
percentage of variance that could be shown by 
choosing original species is only 16% (Lolper + 
Poatri). Thus, the advantage of PCA is that axes 
are created that allow more variance to be shown 
in an ordination graph with a few axes. It will 
rarely be possible to show 100% of the variance 
in two or three axes. If too little of the variance 
can be shown, it is not very useful to provide an 
ordination graph.
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Figure 10.2  An ordination for the dune meadow dataset by using two species.

Next in the output, we get information on scaling 
of species and site scores. In PCA, different types of 
scaling of sites and species can be made. In graphs 
with scaling method 1, the distances between sites 
on the graph are approximations of the Euclidean 
distance between sites. For this reason, a synonym 
for scaling method 1 is distance scaling. If you use 
scaling method 2, then the distances between sites 
are not represented as accurately as with scaling 
method 1. Scaling method 2 is used to show 
the correlations among species better (see Figure 
10.5).

The species scores provided next are coordinates 
that allow the plotting of species on a graph. 
The site scores provided next are the plotting 
coordinates for the sites. You can see that both 
scores are listed for columns named PC1 through 
PC6. There are actually 19 PC scores, one for each 
eigenvalue – the same as the number of species 
in the original matrix, unless there is something 
unusual in the data. The output was limited to 6 
columns to save some space.

Plotting the site scores gives an ordination graph. 
Adding the species scores helps in its interpretation, 
as explained below (Figure 10.4).

Figure 10.3 shows the ordination graph for axes 
PC1 and PC2. You can interpret this ordination 
graph as follows. Since scaling method 1 was 
used, the distances between the sites reflect the 
Euclidean distance among them. Sites that are 
closer together have a small Euclidean distance in 
species composition – remembering, however, that 
the 2 axes do not show all the variance in distance. 
If most of the variance is captured in 2 dimensions, 
the correspondence will be very good, and anyway 
it is ‘as good as it can be’, as the 2 dimensions show 
as much of the variance as possible.

Various methods exist of investigating the 
goodness-of-fit of the first two axis of the PCA 
ordination. One method is to calculate the 
proportion of total variance that is explained for 
each site in the ordination graph, as shown in the 
following results:
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    PC1  PC2
X1  0.13 0.14
X2  0.38 0.54
X3  0.03 0.69
X4  0.00 0.42
X5  0.40 0.41
X6  0.41 0.50
X7  0.65 0.67
X8  0.20 0.43
X9  0.00 0.38
X10 0.55 0.58
X11 0.20 0.39
X12 0.13 0.34
X13 0.07 0.55
X14 0.31 0.41
X15 0.62 0.78
X16 0.77 0.78
X17 0.00 0.39
X18 0.01 0.44
X19 0.01 0.40
X20 0.61 0.75

Figure 10.3  PCA ordination graph for the first two axes for the dune meadow dataset using scaling method 1.

These results show that sites X15 and X16 
are the best represented in Figure 10.3 (78% 
of variance), whereas site X1 is the least well 
represented (14%).

It is distances on the ordination graphs that 
are important. These are not changed if the 
signs (+ or -) of the scores are changed. Some 
software will yield scores that are the negative 
of the scores that you obtain with your 
software. The interpretation of the ordination 
graphs remains the same. This is true for any 
type of ordination graph.

The species scores show the direction from 
the origin (the point with coordinates (0,0) 
shown in the middle of Figure 10.3) where 
sites occur that have a larger than average 
value for the particular species. For example, 
sites X2 and X3 are expected to have larger 
than average values for Poa trivialis since this 
species and the two sites occur in the same 
direction (lower-left) from the center.
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Figure 10.4 shows a more formal method of 
investigating the species scores. The arrow is 
drawn for species Agrostis stolonifera. This arrow 
shows the direction from the origin for which 
sites have larger abundances for this species. By 
constructing perpendicular lines for each site, 
showing their projection onto this arrow, we 
get an indication of differences in abundance 
between sites. Sites X13 and X16 are projected 
farthest from the origin in the direction of the 
species vector. We could expect that these sites 
have larger abundances for the particular species 
than other sites. Sites X6 and X10 are projected 
at the opposite side of the species vector. We can 
expect lower than average abundances for these 
sites. When we check the original species matrix 

(chapter 2), we can see that this interpretation is a 
good approximation of the actual situation, with 
X3 and X16 having large abundance and X6 and 
X10 having low abundance. However, the original 
species matrix shows that site X4 has the largest 
abundance for Agrostis stolonifera whereas it does 
not have the largest position on the species vector. 
Since we do not see all variance in a graph, the 
positions will not completely reflect the exact 
rankings. The value of the ordination lies more 
in providing a good summary of distances among 
sites and their overall relationship with species. 
If you are interested in the information about a 
particular species, such as Agrostis stolonifera, then 
you would be better looking at that species alone, 
perhaps with regression analysis (chapter 6).

Figure 10.4  Interpretation of species scores for an ordination graph. The vector is drawn for species Agrostis 
stolonifera. The projections for the sites indicate a ranking of sites from low (lowest X6) to high (highest X16) 
abundance for the species.
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Figure 10.5  Interpretation of species scores for an ordination graph with scaling method 2. The angles between the 
species vectors indicate correlation among species.

As we saw earlier, scaling method 2 is used to reflect 
the correlations among species better. Species that 
have a small angle between their vectors are expected 
to be strongly positively correlated. Species with 
angles between vectors at 90 or 270 degrees are 
expected to not to be correlated and species with 
angles of 180 degrees are expected to be strongly 
negatively correlated. We can thus see from Figure 
10.5 that Agrostis stolonifera is positively correlated 
with Alopecurus genitalicus, not correlated with 
Poa pratensis, and negatively correlated with 
Anthoxanthum odoratum. Correlation between 
species refers to similarity in abundances for the 
sites of two species. The respective correlations are 
0.54, 0.07 and -0.45.

Note that different software packages will provide 
different coordinates (scores) for species and sites, 
even if the same scoring type was used. These 
differences are caused by different approaches to 
multiplying species and site scores in attempts 

to provide better graphs of sites and species. The 
interpretation of the graphs will remain the same, 
despite the differences in scales.

Some research has been done on how many 
principal component axes should be analysed to 
get a good ecological picture of the total variance 
of a dataset. One of the better methods is based 
on the broken-stick distribution. The name comes 
from the idea that if you chopped up the total 
variance into pieces randomly, in much the same 
way you could randomly break a stick into pieces, 
some of the parts would be larger than others. We 
are interested in parts of the variance which reflect 
real structure, not just random ‘breaking’. So a 
test for the importance of principal components 
can be based on comparison of what you would 
get with random breaking and what you actually 
see. If you use the test based on the broken-stick 
distribution for the dune meadow dataset, then 
you obtain the following result:
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                                  1        2         3         4
eigenvalue                        24.79532 18.14662  7.629135  7.152772
percentage of variance            29.47484 21.57136  9.068950  8.502685
cumulative percentage of variance 29.47484 51.04620 60.115145 68.617831
broken-stick percentage           18.67231 13.40916 10.777577  9.023191
broken-stick cumulative %         18.67231 32.08147 42.859047 51.882238
% > bs%                            1.00000  1.00000  0.000000  0.000000
cum% > bs cum%                     1.00000  1.00000  1.000000  1.000000

Two criteria are available to select the number 
of significant axes. The first criterion is to select 
axes for which the percentage of variance is larger 
than the corresponding percentage of variance of 
the broken-stick distribution. For the PCA results 
reported above, only two axes are significant: 
axis 1 with 29.5% (>18.7% of the broken-stick 
distribution) and axis 2 with 21.6% (>13.4%). 
Another criterion is to select the axes for which 
the cumulative percentage of variance is larger 
than the corresponding cumulative percentage of 
variance of the broken-stick distribution. For the 

dune meadow dataset, this criterion would result 
in all axes to be significant. 

If you used scaling method 1 (distance scaling), 
then there is a technique to select those species 
that significantly contributed to the axes shown 
in an ordination graph. This technique is based 
on an equilibrium circle. Species that significantly 
contribute to the ordination will have vectors 
outside of the equilibrium circle (Legendre and 
Legendre 1998). Figure 10.6 shows the vectors for 
the significant species for axis 1 and 2 of the PCA 
of the dune meadow dataset.

Figure 10.6  Equilibrium circle for the first two PCA axes for the dune meadow dataset. Vectors are drawn for the 
species that significantly contributed to the ordination graph.
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Figure 10.7  The first two PCA axes for the dune meadow dataset, after the species matrix was transformed so that 
distances among sites reflect their Hellinger distance.

Principal components analysis on 
transformed species matrices
A principal components analysis (PCA) will 
produce ordination graphs that portray the 
Euclidean distance among sites. This ordination 
technique is therefore limited to investigating 
the Euclidean distance among sites. There is one 
method of using PCA to investigate some other 
ecological distances among sites, however. This 
method is based on transforming the species 
matrix first, followed by PCA on the transformed 
matrix. By proper transformations, investigations 
are thus possible of the chi-square distance, 
Hellinger distance and distances between species 
profiles, which are better ecological distances than 
the Euclidean distance (see Chapter 8; Legendre 
and Gallagher 2001).

Figure 10.7 gives an example of the dune 
meadow dataset after a transformation that leaves 
distances representing the Hellinger distance.

Principal coordinates analysis
Principal coordinates analysis (PCoA) is an 
ordination technique that is similar to PCA. The 
technique has the advantage over PCA that any 
ecological distance can be investigated. In fact, 
when you calculate a PCoA with the Euclidean 
distance, then you will obtain the same result as 
with a PCA. A synonym for principal coordinates 
analysis is metric multidimensional scaling. The 
idea of PCoA is to start with a distance matrix. 
Then try to find an arrangement of sites such that 
that the distances between the sites in the graph 
match as closely as possible those in the distance 
matrix.

A PCoA for the dune meadow dataset based 
on the Bray-Curtis distance, gives the following 
result:
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$points
            Dim1        Dim2
X1  -0.237339546 -0.17173114
X2  -0.197122801 -0.12450970
…
X19 -0.003609141  0.31387032
X20  0.340688509  0.10539824

$eig
[1]  9.032980e-02  5.381042e-02  

$ac
[1] 0

$GOF
[1] 0.5714973 0.5961463

$eigen.total
[1] 4.990226

$R.constant
[1] 1.494617

$Rscale
[1] TRUE

$scaling
[1] 1

$cproj
               Dim1         Dim2
Achmil  -4.01695503   0.88822361
Agrsto   9.92187299  -7.98344244
…
Trirep  -2.19199995  -0.53783022
Viclat  -0.73957850   0.84489420 

The results are similar to those for a PCA. First, 
the scores of the sites are given. These scores 
correspond to the different axes calculated by the 
PCoA, analogous to the PCA. Figure 10.8 shows 
a graph of the first two axes of the PCoA. You can 
see, for example, that site X1 is expected to have 
a small Bray-Curtis distance from site X2, and a 
large distance from site X20.

Next in the results, the eigenvalues are given. 
The eigenvalues can be interpreted in the same 

way as the eigenvalues of PCA: they express how 
much variance is shown on each axis.

Lower in the output, some parameters are 
provided that can be used to interpret the 
goodness-of-fit of the PCoA – that is, the extent 
to which the ordination graph reflects the distance 
matrix accurately. The GOF provides two ways 
of assessing the fit with the extracted axes.  The 
sum of the eigenvalues for the 2 extracted axes in 
our results may be expressed as a ratio over the 
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Figure 10.8  Ordination graph for the first two axes of a PCoA of the dune meadow dataset based on the Bray-Curtis 
distance.

total of absolute values of all eigenvalues, or over 
the total of all positive eigenvalues. This method 
of calculating the GOF may seem strange in 
comparison to PCA, but results from the fact that 
some eigenvalues may be negative in PCoA.

If all 19 axes are calculated for the PCoA, then 
you obtain the eigenvalues that are shown below.

You can see that eigenvalues are provided in 
a sequence of largest to the smallest value. This 
means, as for PCA, that most variance will be 
shown by making an ordination graph with the 
first two axes. When you take a closer look, you 
will see that the last 5 eigenvalues are negative. 

The GOF gives the percentage of the first 
two axes when the absolute value is taken for 
the negative eigenvalues or when the negative 
eigenvalues are not considered. You can see that 
calculated by these methods, the first two axes 
show 57% and 60% of variance.

Negative eigenvalues are a result of the fact that 

$eig
 [1]  9.032980e-02  5.381042e-02  2.428758e-02  2.011838e-02  1.469129e-02
 [6]  1.245426e-02  8.901072e-03  5.065536e-03  3.920619e-03  3.248000e-03
[11]  2.891603e-03  1.009173e-03  8.483670e-04  2.105743e-04 -5.112869e-18
[16] -1.390796e-03 -2.255631e-03 -2.880746e-03 -3.901214e-03

it is impossible to calculate site scores so that the 
distance among the sites will equal those in the 
distance matrix. This will occur when distances are 
not metric (see chapter 8). When the distances are 
not metric, some eigenvalues will be negative. It 
is not possible to calculate site scores for negative 
eigenvalues. It is therefore not possible to obtain 
an ordination of sites that will exactly reproduce 
the distances of the distance matrix, even if all 19 
axes are used.

The Bray-Curtis and Kulczynski distances 
are known to produce negative eigenvalues for 
some datasets. One solution (called the Caillez 
correction method) that will not produce negative 
eigenvalues is to add some constant to the elements 
of the distance matrix. This solution will now 
allow calculation of site scores for each eigenvalue. 
However, the distance matrix is modified and 
total variance was artificially increased in a rather 
arbitrary way. If your main interest is investigating 
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ecological distance, then you may opt not to correct 
for negative eigenvalues and only to analyse the first 
axes. Another solution would be to analyse the 
square-roots of the distance (the square root of the 
Bray-Curtis distance is expected to be metric). 

A standard PCoA does not calculate scores for 
species. There is one way of calculating the same 
species scores as for PCA when the Euclidean 
distance is investigated. This approach is based 
on the correlations between species and axes, and 
weighting these scores by the percentage of variance 
expressed on each axis. The site and species scores 
provided in the PCoA output will be exactly the 
same as for PCA when you investigate the Euclidean 
distance. These species scores are labelled as cproj 
in the output. There is no fixed technique to 
calculate species scores for PCoA, however. Another 
technique is to calculate weighted average scores 
(see below: non-metric multidimensional scaling). 

The species scores can be plotted in an 
ordination graph. Figure 10.9 shows the graph 

for the dune meadow dataset. The species scores 
should be interpreted similarly as the species 
scores of a PCA (see also Figure 10.4): sites that 
are plotted at the same direction from the origin 
as species are expected to have higher abundance 
of the species. We expect therefore that site X1 
has higher abundance of Lolium perenne and Poa 
pratensis.

Non-metric multidimensional 
scaling
Non-metric multidimensional scaling (NMS or 
NMDS) is an ordination technique that is related 
to PCoA. The calculations are also done on a 
distance matrix. However, the positions of sites 
in the ordination are chosen so that rank order 
only of intersite distances is represented. If sites 1 
and 2 are the closest in the distance matrix, they 
will be in the ordination graph. If site 1 is further 

Figure 10.9  Ordination graph for the first two axes of a PCoA of the dune meadow dataset based on the Bray-Curtis 
distance. The species coordinates indicate the correlation of site scores with each species.
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from 3 than 2, then this will also be true in the 
graph. However, the graph could look the same 
for distance matrices A and B: 

Distance matrix A

Site 1 Site 2 Site 3
Site 1 0.0 0.1 0.2
Site 2 0.1 0.0 0.3
Site 3 0.2 0.3 0.0

Distance matrix B

Site 1 Site 2 Site 3
Site 1 0.0 0.1 0.8
Site 2 0.1 0.0 0.9
Site 3 0.8 0.9 0.0

Unless you have no faith in the quantitative 
nature of the distances calculated in your distance 
matrix, this does not seem a desirable feature.

Another difference between PCoA and NMS 
is that the final result is obtained through some 
random process. When you repeat the analysis, 
then you may obtain different results. You 
can repeat the analysis several times and then 
represent the best result. The best result is the 
one that reflects the rank-order of distances 
in the original distance matrix the best. The 
statistic that reflects how well the configuration 
represents the distances is called ‘stress’. A smaller 
stress means that a better NMS ordination was 
calculated. Final stress values should ideally be 
smaller than 10% and not larger than 30% to 
represent species abundance data accurately.

When you calculate a NMS ordination for the 
dune meadow dataset based on the Bray-Curtis 
distance, and show the best ordination out of 
100 for two axes, then you will obtain a similar 
result to:

$points
          [,1]       [,2]
X1   3.3829673 -4.7738116
X2   2.0565435 -2.6775501
X3   2.6890856 -0.4458917
X4   3.1468039 -0.7250620
X5   0.1917841 -2.9803663
X6  -0.7784914 -2.2831423
X7   0.1469503 -2.4612942
X8   1.6818537  1.8604024
X9   2.9114147  0.5966568
X10 -0.2924911 -2.2601592
X11 -1.7602236 -0.9072029
X12  2.9598205  2.4678441
X13  4.0871950  2.0987138
X14 -1.0003700  6.0644557
X15  0.3415692  5.6201219
X16  2.6892989  6.1292587
X17 -5.8442737 -2.9432844
X18 -2.5547698  0.1139317
X19 -5.1139348  1.3438575
X20  0.2423127  6.4558772

$stress
[1] 11.91173

You can see that this output provides the scores 
for the sites, and an indication of the stress. Figure 
10.10 provides the ordination graph with the 
calculated scores.

The NMS does not provide species scores. 
As in PCoA, you could add the correlation or 
weighted average scores to the ordination graph. 
The interpretation of weighted average scores is 
as follows. The sites that are closest to a species 
are expected to have the highest abundance, 
whereas sites that are farther away are expected 
to have lower abundance. Figure 10.13 gives a 
more explicit example for the interpretation of 
weighted average scores. Note this is not the 
same as the interpretation in PCA, illustrated in 
Figure 10.4.

Figure 10.11 shows a graph where the weighted 
average scores of species were added for the NMS 
ordination of Figure 10.10. The species scores 
suggest that the abundance of Vicia lathyroides is 
highest for site X11, for example.
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Figure 10.10  Ordination graph for a two-dimensional NMS of the dune meadow dataset based on the 
Bray-Curtis distance. The best configuration out of 100 is shown.

Figure 10.11  Ordination graph for a two-dimensional NMS of the dune meadow dataset based on the Bray-Curtis 
distance, with weighted-average scores for species.
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Correspondence analysis

Correspondence analysis (CA) or reciprocal 
averaging (RA) is an ordination technique that 
shows the chi-square distance among sites. This 
technique was developed independently by several 
authors that gave it different names. One of the 
algorithms calculates site and species scores by 
consecutive steps of calculating site scores as the 
weighted average of the species scores, followed by 
calculating species scores as the weighted average 
of the site scores, until the results converge. This 
technique has an advantage over PCA because the 
chi-square distance is a better ecological distance 
than the Euclidean distance that is shown in 
PCA. The PCA on transformed species matrices 
is an alternative method that allows using better 
ecological distances than the chi-square distance 
(see above: Principal component analysis on 
transformed species matrices).

A correspondence analysis of the dune meadow 
dataset gives the result shown on the next page.

The interpretation of the different parts of the 
output is quite similar to the output of the PCA 
provided above. The interpretation is as follows.

The partitioning of the mean squared contingency 
coefficient reflects how much of the variance in 
chi-square distances was calculated. As CA is an 
unconstrained ordination technique, all variance 
is calculated.

Next the eigenvalues are given. As for PCA and 
PCoA, the eigenvalues are listed from highest to 
lowest, and their sum equals the total variance. 
Again as for PCA and PCoA, by plotting the first 
axes, more variance will be shown. When plotting 
the first two axes, 44% of variance will be shown 
(the accounted values indicate the cumulated 
proportion of variance).

The scaling method 1 is the same as for PCA. 
This scaling method means that the distances 
between sites reflect the chi-square distance. 
Scaling method 2 means that the distances 
between the species reflect the chi-square distance 
among species.

The species and site scores are the coordinates 
that are used in ordination graphs of the CA. 
Figure 10.12  shows the ordination graph for the 
first two axes of the CA for the dune meadow 
dataset. 
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Partitioning of mean squared contingency coefficient:
                   
Total         2.115
Unconstrained 2.115

Eigenvalues, and their contribution to the mean squared contingency coefficient 

             CA1    CA2    CA3    CA4    CA5    CA6     CA7     CA8     CA9   CA10
lambda    0.5360 0.4001 0.2598 0.1760 0.1448 0.1079 0.09247 0.08091 0.07332 0.0563
accounted 0.2534 0.4426 0.5654 0.6486 0.7170 0.7680 0.81175 0.85000 0.88467 0.9113
             CA11    CA12    CA13    CA14    CA15     CA16     CA17     CA18
lambda    0.04826 0.04125 0.03523 0.02053 0.01491 0.009074 0.007938 0.007002
accounted 0.93410 0.95360 0.97025 0.97995 0.98700 0.991293 0.995046 0.998356
              CA19
lambda    0.003477
accounted 1.000000

Scaling 1 for species and site scores
-- Sites are scaled proportional to eigenvalues
-- Species are unscaled: weighted dispersion equal on all dimensions

Species scores

             CA1      CA2      CA3       CA4      CA5      CA6
Achmil -1.241039  0.13375 -1.15041 -0.021261 -1.73513 -0.57465
Agrsto  1.275444 -0.32647  0.55258  0.057909 -0.36618 -0.06869
…
Trirep -0.104710 -0.03213 -0.40404  0.063081 -0.49082  1.64252
Viclat -0.845393  0.58712 -0.90362 -2.384693  3.05575  4.41315

Site scores (weighted averages of species scores)

         CA1        CA2      CA3      CA4      CA5      CA6
X1  -0.59425 -0.6848644 -0.07380 -0.88373 -0.14948 -0.60267
X2  -0.46320 -0.4401641 -0.04948 -0.49792 -0.37167  0.02160
…
X19 -0.50536  2.0648336  0.99756 -0.07422 -0.02797 -0.05283
X20  1.42353  0.6761410 -0.33944 -0.23205  0.60727 -0.55941
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Figure 10.13  Interpretation of species scores for a correspondence analysis. Larger circles indicate a smaller 
expectation for the abundance of Juncus articulatus for the correspondence analysis of the dune meadow dataset 
(scaling method 2).

Figure 10.12  Ordination graph for the first two axes of correspondence analysis of the dune meadow dataset, using 
scaling method 1.
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Species scores should be interpreted as weighted 
average scores. Sites that have positions in the 
graph close to the species are expected to have 
high abundance for the species, whereas sites that 
are farther are expected to have low abundance. 
Figure 10.13 shows how the position of Juncus 
articulatus should be interpreted. A smaller circle 
– or smaller distance between the species and site 
– means that we expect higher abundance for a 
site. We thus expect high abundance for sites X8 
and X16, and low abundance for site X17. Because 
we do not show all variance in a two dimensional 
graph, the actual abundance may differ. Species 
that are drawn at intermediate distance from the 
origin are often best portrayed, not species at the 
edges or close to the origin.

The site scores can be thought of as a measure 
of ‘suitability’ of the site. CA assumes a unimodal 
distribution of species on this suitability gradient 
– either too high or too low results in low 
abundance of a species. PCA, on the other hand, 
assumes a linear relationship with ‘suitability’. This 
difference in the underlying assumptions may be 
another advantage of CA over PCA, because the 
unimodal distribution is more common in nature 
than the linear distribution. 

Simulation studies have shown that the 
ordination provided by a CA will often not 
reconstruct the known structure of the data. 

Based on this information, some modifications 
were made in CA resulting in the ordination 
technique of detrended correspondence analysis 
(DCA). However, some other simulations have 
shown that DCA is often not successful either 
in reconstructing the known structure of data. 
Although DCA has often been used in the past, 
we prefer to use other methods for ordination.

Redundancy analysis
Redundancy analyis (RDA) is the first of the 
constrained ordination techniques that will be 
discussed in this chapter. RDA is an ordination 
technique that is related to PCA. Both techniques 
show the Euclidean distance between sites in the 
ordination graphs. The difference is that in RDA 
the ordination is constrained by the environmental 
variables, shown in the environmental matrix. 
The new axes for displaying the species matrix 
are constrained to be linear combinations of the 
columns of the environment matrix, similar to 
the fitted values you would get by regressing PCA 
scores on the environmental variables.

A RDA of the dune meadow dataset, using the 
type of management as a constraining variables 
gives the following result:

Partitioning of variance:
                   
Total         84.12
Constrained   29.23
Unconstrained 54.89

Eigenvalues, and their contribution to the variance 

             RDA1    RDA2   RDA3     PC1    PC2    PC3    PC4    PC5    PC6    PC7
lambda    14.8654 10.6904 3.6750 15.2700 8.4275 6.8989 5.6749 3.9884 3.1212 2.5875
accounted  0.1767  0.3038 0.3475  0.1815 0.2817 0.3637 0.4312 0.4786 0.5157 0.5464
             PC8    PC9   PC10   PC11   PC12   PC13   PC14   PC15   PC16
lambda    2.3802 1.8181 1.3762 0.9951 0.7853 0.6610 0.4666 0.2827 0.1594
accounted 0.5747 0.5963 0.6127 0.6245 0.6339 0.6417 0.6473 0.6506 0.6525
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Scaling 1 for species and site scores
-- Sites are scaled proportional to eigenvalues
-- Species are unscaled: weighted dispersion equal on all dimensions

Species scores

           RDA1     RDA2     RDA3      PC1      PC2      PC3
Achmil  0.71492  1.19801  0.61663 -0.79733  0.03573  0.02448
Agrsto -0.29018 -3.22454  0.08531  2.85395 -0.50083 -0.52967
…
Trirep  0.87258  1.85598  1.07994 -0.13477 -0.84708  1.12297
Viclat  0.09410  0.44974  0.85491 -0.09270  0.38100  0.10988

Site scores (weighted sums of species scores)

       RDA1     RDA2      RDA3      PC1     PC2      PC3
X1   0.3169  0.10573  0.312124 -0.88490  0.4845 -0.83687
X2   0.9030  0.39920  0.667488  0.10346 -0.7506 -0.26163
…
X19 -0.9860  0.53097  0.103590 -0.60726 -0.2858  0.50996
X20 -1.2599 -0.33664 -0.270509  0.81481  0.2488 -0.22649

Site constraints (linear combinations of constraining variables)

       RDA1    RDA2     RDA3
X1   0.2150 -0.7191  0.12068
X2   0.5179  0.7110  0.50471
…
X19 -0.8890  0.1518 -0.02099
X20 -0.8890  0.1518 -0.02099

Biplot scores for constraining variables

                RDA1    RDA2     RDA3
ManagementHF  0.4838  0.2911 -0.82535
ManagementNM -0.9793  0.1972 -0.04651
ManagementSF  0.2369 -0.9340  0.26735

Centroids for factor constraints

                RDA1    RDA2     RDA3
ManagementBF  0.5179  0.7110  0.50471
ManagementHF  0.4980  0.2541 -0.42245
ManagementNM -0.8890  0.1518 -0.02099
ManagementSF  0.2150 -0.7191  0.12068

Test for significance of all constrained eigenvalues
Pseudo-F:        2.840018 
Significance:    < 0.001 
Based on 1000 permutations under reduced model.

 



     ANALYSIS OF ECOLOGICAL DISTANCE BY ORDINATION     173  

When you analyse the results, you could notice 
that the format is similar to the output of a PCA 
and CA. Note that there are 4 management 
practices, so 3 degrees of freedom or dimensions 
for this variable.

First the total, constrained and unconstrained 
variances are provided. The RDA provides 
an ordination that is constrained by some 
environmental variables. The RDA shows 29.2 
from the total 84.1 variance, or 34.7% of variance 
is shown. This means that not all differences in 
Euclidean distance among sites are shown, but only 
those differences that can be related to differences 
in environmental variables.

Next the eigenvalues are provided. As for 
methods that were discussed earlier, the eigenvalues 
show how much variance is expressed on each 
axis. You can see two types of axes. The RDA 
axes are calculated for the RDA ordination. The 
PCA axes are calculated by a PCA on the variance 
that was not explained by the RDA. You can see 
that the RDA axes show the 34.7% of the total 
variance that can be explained by constrained 
axes (the accounted values indicate the cumulated 
proportion of variance). Again eigenvalues are 
listed from highest to lowest, thus making a graph 
of the first axes will result in most variance being 
shown.

The output follows with information on 
the scaling method used. As for PCA, scaling 
method 1 means that the distances among sites 
in the ordination graph corresponds to Euclidean 
distance among sites. Scaling method 2 would 
produce a correlation scaling as for PCA.

Next the species scores and site scores are 
provided. These scores are used in an ordination 
graph. These scores depend on the scaling method, 
and on differences in scaling of axes between 
software packages. The species scores should be 

interpreted as vectors indicating the direction of 
larger abundance for the species (see Figure 10.4). 
The biplot scores for constraining variables tell 
you how to interpret the RDA axes. RDA1 is 
roughly NM versus the rest, and RDA2 is roughly 
SF versus the rest (Figure 10.14).

RDA is a regression-type model that predicts 
where sites will occur in an ordination graph based 
on the environmental variables. The site constraints 
show the predicted value for each site. Note that 
the same value is predicted for each site with the 
same type of management. This is what we expect, 
as the predicted position will depend only on the 
environmental variables included, in this case 
management.

The biplot scores and the centroid scores are two 
methods of plotting an environmental variable in 
the ordination graph. The biplot scores are scores 
for vectors of each of the environmental variables 
used in the analysis. The direction from the origin 
to the biplot score shows sites with higher values 
for the environmental variable. The interpretation 
is thus similar to the species scores (see above and 
Figure 10.4). The centroid scores show the average 
position that is predicted for sites of the same 
category. The biplot and centroid scores are further 
discussed below in this section.

The output finishes with a significance test. The 
value of P < 0.001 shows that it is not very likely that 
the pattern that we observed was just random. We 
can thus be confident that we described an actual 
pattern of our data. The significance value was 
calculated from a permutation test. Recommended 
numbers of permutations are 1000 for a significance 
level of 0.05 and 5000 for a significance level of 
0.01.

When we plot the site, species and centroid scores 
for the first RDA axes, then we obtain the ordination 
graph shown in Figure 10.14 (next page).
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Figure 10.14  RDA ordination graph for the first two axes for the dune meadow dataset using scaling method 1 and 
the type of management as a constraining variable.

As discussed earlier, the species scores show the 
direction of higher abundance of a particular 
species. We thus expect higher abundance of 
Alopecurus genitalicus for sites X13 and X12, 
and lower abundance for X17, X18 and X19. 
The centroid scores show where sites of the same 
category of management are expected in the graph. 
These scores can be interpreted in a similar way 
as a site score. For instance, we expect sites with 
standard farming to contain more Poa trivialis and 
Alopecurus genitalicus.

As for regression analysis, it is possible to 
include several environmental variables. Figure 
10.15 shows the ordination graph for the first two 
RDA axes when all environmental variables were 
used as explanatory variables. You can see that the 
ordination graph has become very busy with all the 
site, species, biplot and centroid scores. A method 
of producing graphs that can be interpreted more 
easily is to produce separate graphs for different 
sets of scores, for instance one graph with site 

and centroid scores, and one graph with species 
scores.

A slightly more complicated modification of 
RDA is partial redundancy analysis. This method 
is based on first removing the variance that can 
be explained by one subset of data, and then only 
analysing the residual variance. By this technique, 
it is for instance possible to remove the influence of 
spatial variables in the data first, and then analyse 
the influence by other variables. It is most useful 
for removing known environmental effects so that 
possible further effects can be explored (Borcard 
et al. 1992).

Similar to PCA, it is possible to transform the 
species matrix before the RDA, so that ecological 
distances other than the Euclidean distance are 
shown, such as the Hellinger distance or the 
distance between species profiles (see above: 
Principal components analysis on transformed 
species matrices). This transformation approach 
can substantially increase the usefulness of RDA.
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Figure 10.15  RDA ordination graph for the first two axes for the dune meadow dataset using scaling method 1 and 
all the environmental variables as constraining variables.

Canonical correspondence 
analysis

Canonical correspondence analyis (CCA) is an 
ordination technique that is related to CA, as 
suggested by its name. Both techniques show the 
chi-square distance among sites in the ordination 
graphs. As discussed in chapter 8, this distance is 
not the best ecological distance measure, although 
it is better than the Euclidean distance. In CCA 
the ordination is constrained by the environmental 
variables, shown in the environmental matrix. 
The approach of CCA is similar to RDA, with the 
CCA axes constrained to be linear combinations 
of environmental variables.

A CCA of the dune meadow dataset, using the 
type of management as a constraining variable 
gives the following result (next page):
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Partitioning of mean squared contingency coefficient:
                    
Total         2.1153
Constrained   0.6038
Unconstrained 1.5114

Eigenvalues, and their contribution to the mean squared contingency coefficient 

            CCA1   CCA2   CCA3    CA1    CA2    CA3    CA4    CA5     CA6     CA7
lambda    0.3186 0.1825 0.1027 0.4474 0.2030 0.1630 0.1346 0.1294 0.09494 0.07904
accounted 0.1506 0.2369 0.2855 0.2115 0.3075 0.3845 0.4482 0.5093 0.55421 0.59158
              CA8     CA9    CA10    CA11    CA12    CA13     CA14     CA15
lambda    0.06526 0.05004 0.04321 0.03870 0.02385 0.01773 0.009172 0.007959
accounted 0.62243 0.64609 0.66651 0.68481 0.69609 0.70447 0.708805 0.712568
              CA16
lambda    0.004157
accounted 0.714533

Scaling 2 for species and site scores
-- Species are scaled proportional to eigenvalues
-- Sites are unscaled: weighted dispersion equal on all dimensions

Species scores

           CCA1     CCA2      CCA3       CA1       CA2      CA3
Achmil  0.19825  0.72622  0.300280  0.536978 -0.435913  0.64609
Agrsto -0.10058 -0.73046  0.007614 -0.681142  0.217728  0.03744
…
Trirep -0.04953  0.33644  0.186947 -0.090075 -0.056136  0.12455
Viclat -0.14617  0.98179  1.261557  0.241368 -0.211654 -0.51063

Site scores (weighted averages of species scores)

        CCA1    CCA2     CCA3       CA1      CA2      CA3
X1   1.35561  0.4747  1.06564  0.823027 -2.26986 -0.78064
X2   0.86419  0.8142  1.87245 -0.198170 -0.21094 -0.45453
…
X19 -2.61902  0.6190  0.42849  2.309910  2.21260 -0.08448
X20 -2.32115 -1.3309 -1.00044 -1.476716 -0.09132 -0.90420

Site constraints (linear combinations of constraining variables)

       CCA1     CCA2     CCA3
X1   0.5601 -1.38599  0.35086
X2   0.4313  1.32739  1.70492
…
X19 -1.8785 -0.05503 -0.06852
X20 -1.8785 -0.05503 -0.06852
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Biplot scores for constraining variables

                CCA1     CCA2     CCA3
ManagementHF  0.3716  0.42702 -0.82287
ManagementNM -0.9989 -0.02624 -0.03819
ManagementSF  0.3665 -0.90307  0.22847

Centroids for factor constraints

                CCA1     CCA2     CCA3
ManagementBF  0.4313  1.32739  1.70492
ManagementHF  0.5583  0.63731 -1.22396
ManagementNM -1.8785 -0.05503 -0.06852
ManagementSF  0.5601 -1.38599  0.35086

Test for significance of all constrained eigenvalues
Pseudo-F:        2.130750 
Significance:    0.001 
Based on 1000 permutations under reduced model.

The output provided above is similar to the output 
for CA and for RDA.

First the total and constrained variance is given, 
followed by the variance shown on each axes by 
the eigenvalues. We can see that 28.5% of variance 
is accounted in the CCA, with 23.7% on the 
first two axes (the accounted values indicate the 
cumulated proportion).

The output is followed by an indication of the 
scaling method that was used. The scaling method 
is the same as for CA, scaling method 1 meaning 
that the chi-square distances among sites are 
shown.

The species, site, biplot, and centroid scores are 
the coordinates for species, sites and environmental 
variables in an ordination graph. The interpretation 
of these scores is similar to the interpretation for 
RDA. Differences with RDA are that the species 
scores are weighted average scores (as for CA, see 
Figure 10.13), and that the distance among sites 
reflects the chi-square distance.

Figure 10.16 (next page) shows the ordination 
graph for the dune meadow dataset, using the 
scores provided above.

The significance test is also based on permutation, 
as for RDA. The P < 0.001 indicates that the 
observed relationship between environmental 

variables and ecological distance is not due to 
chance.

As for RDA, there is a partial CCA method. In 
this method, it is possible to remove the effect of 
one subset of variables first, and then analyse the 
effects of other variables.

Distance-based redundancy 
analysis and canonical analysis of 
principal coordinates
Distance-based redundancy analyis (db-RDA) 
and canonical analysis of principal coordinates 
(CAP) are constrained ordination techniques that 
analyse results of PCoA further. The advantage 
of these techniques is that any type of ecological 
distance can be analysed, including distances that 
are better for investigating differences in species 
composition as seen in chapter 8. Since db-RDA 
and CAP are constrained ordination techniques, 
the influence of environmental variables on 
differences in the selected good ecological distance 
can be investigated, and they therefore offer more 
advanced ways of constrained analysis than RDA 
and CCA. Although both db-RDA and CAP 
analyse the results of PCoA, the methods that they 
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Figure 10.16  CCA ordination graph for the first two axes for the dune meadow dataset using scaling method 1 and 
management as constraining variable.

use are different: db-RDA uses RDA, whereas 
CAP uses linear discriminant analysis or canonical 
correlation analysis. A detailed discussion of the 
differences between both methods is beyond the 
scope of this chapter (see Legendre and Anderson 
1999; Anderson and Willis 2003).

Partitioning of squared Bray distance:
                   
Total         87.28
Constrained   28.50
Unconstrained 58.78

Eigenvalues, and their contribution to the squared Bray distance 

             CAP1   CAP2   CAP3     PC1    PC2    PC3   PC4    PC5    PC6    PC7
lambda    17.0957 8.6126 2.7943 24.1862 9.2599 7.1894 5.891 3.9894 2.8640 1.6239
accounted  0.1959 0.2945 0.3265  0.2771 0.3832 0.4656 0.533 0.5787 0.6116 0.6302
            PC8    PC9   PC10   PC11   PC12    PC13    PC14
lambda    1.385 1.1412 0.6116 0.3267 0.1858 0.08386 0.04491
accounted 0.646 0.6591 0.6661 0.6698 0.6720 0.67294 0.67345

A db-RDA of the dune meadow dataset, using the 
type of management as a constraining variable, 
and the Bray-Curtis distance to express ecological 
distance gives the following result:
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Scaling 1 for species and site scores
-- Sites are scaled proportional to eigenvalues
-- Species are unscaled: weighted dispersion equal on all dimensions

Species scores

           CAP1       CAP2      CAP3      PC1      PC2      PC3
Achmil  0.48210 -1.5325659 -0.459148 -0.64885 -0.19187 -1.38213
Agrsto  0.23882  3.6158066 -0.582905  2.26057 -0.05501 -0.12210
…
Trirep  0.53227 -2.3206841 -0.882848  0.27147  0.43253 -0.78951
Viclat  0.03078 -0.5633329 -0.911828 -0.07164  0.03791  0.53027

Site scores (weighted averages of species scores)

        CAP1    CAP2     CAP3      PC1      PC2      PC3
X1   1.10024 -0.3275 -0.50105 -1.16792 -1.16579  0.02871
X2   0.85167 -0.5197 -0.51581  0.05581 -0.23602 -0.26113
…
X19 -1.07753 -0.5148 -0.12207 -0.74980  0.89546  0.40619
X20 -1.29531  0.8673  0.17204  1.00331 -0.28929  0.22866

Site constraints (linear combinations of constraining variables)

       CAP1       CAP2      CAP3
X1   0.4100  0.5796560 -0.124936
X2   0.4034 -0.7544929 -0.397613
…
X19 -0.9646 -0.0001609  0.004098
X20 -0.9646 -0.0001609  0.004098

Biplot scores for constraining variables

                CAP1       CAP2     CAP3
ManagementHF  0.3872 -0.3126081  0.86739
ManagementNM -0.9999 -0.0002350  0.01051
ManagementSF  0.4250  0.8465954 -0.32035

Centroids for factor constraints

                CAP1       CAP2      CAP3
ManagementBF  0.4034 -0.7544929 -0.397613
ManagementHF  0.4235 -0.2426984  0.383574
ManagementNM -0.9646 -0.0001609  0.004098
ManagementSF  0.4100  0.5796560 -0.124936

Test for significance of all constrained eigenvalues
Pseudo-F:        2.26279 
Significance:    0.006 
Based on 1000 permutations under reduced model.

The output is very similar to the output of a 
RDA. The site, species, biplot and centroid scores 
should be analysed in a similar way. We can see 

that db-RDA expresses 32.6% of total squared 
distance. The first two axes express 29.4% of 
squared distance (the accounted values indicate 
the cumulated proportion).
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Figure 10.17  Db-RDA ordination graph for the first two axes for the dune meadow dataset using scaling method 1, 
the Bray-Curtis distance and the type of management as a constraining variable.

When we plot the site, species and centroid 
scores for the first db-RDA axes, then we obtain 
the ordination graph shown in Figure 10.17

As discussed for RDA, the species scores show 
the direction of higher abundance of a particular 
species. We thus expect higher abundance of 
Alopecurus genitalicus for sites X13 and X12, 
and lower abundance for X17, X18 and X19. 
The centroid scores show where sites of the same 
category of management are expected in the graph. 
These scores can be interpreted in a similar way 
as a site score. For instance, we expect that sites 
with standard farming will contain more Agrostis 
stolonifera and Alopecurus genitalicus.

Whereas we investigated the influence of 
a categorical variable on the differences in 
species composition above, you can also include 
continuous variables as explanatory variables. 
A db-RDA of the dune meadow dataset using 
the depth of the A1 horizon as the constraining 
variable and the Bray-Curtis distance to express 
ecological distance gives the result shown on the 
next page.

The results are very similar to those for 
management shown earlier. Because only one 
continuous explanatory variable was used, only 
one constrained ordination axis was obtained 
accounting for 15.8% of total squared Bray-Curtis 
distance.

Because only one constrained axis was obtained, 
an ordination graph was constructed that also used 
the first residual axis as shown in Figure 10.18. The 
vector for the depth of the A1 horizon indicates 
the direction in the graph where sites are expected 
that have deeper A1 horizon: these sites occur on 
the right-hand side of the graph. We therefore 
infer from the graph that sites that have a deeper 
A1 horizon are expected to contain more Agrostis 
stolonifera and Eleocharis palustris, whereas sites 
that have a more shallow A1 horizon would have 
more Lolium perenne and Poa pratensis.
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Call:
capscale(formula = dune ~ A1, data = dune.env, distance = “bray”) 

Partitioning of squared Bray distance:
                   
Total         87.28
Constrained   13.80
Unconstrained 73.49

             CAP1     PC1     PC2    PC3    PC4    PC5   PC6    PC7    PC8
lambda    13.7975 21.6515 18.8817 8.7678 6.8894 4.5809 4.083 3.2127 1.8245
accounted  0.1581  0.2481  0.4644 0.5648 0.6438 0.6962 0.743 0.7798 0.8007
            PC9   PC10   PC11   PC12   PC13    PC14
lambda    1.414 1.1725 0.5201 0.3357 0.1033 0.05102
accounted 0.817 0.8304 0.8363 0.8402 0.8413 0.84193

Scaling 1 for species and site scores
-- Sites are scaled proportional to eigenvalues
-- Species are unscaled: weighted dispersion equal on all dimensions

Species scores

           CAP1      PC1      PC2      PC3      PC4      PC5
Achmil -0.67633 -1.04282  0.27838 -0.28142  0.95411 -0.65458
Agrsto  1.64726  2.89575  0.65578  0.51099  0.68881  0.23853
…
Trirep  0.21369 -0.86349  0.61722  0.31855 -0.82554  0.60036
Viclat -0.18672 -0.18742 -0.13515 -0.27223 -0.66189  0.35546

Site scores (weighted averages of species scores)

        CAP1      PC1      PC2      PC3      PC4      PC5
X1  -1.19851 -0.13951  0.83107 -0.92749  0.30446  0.18771
X2  -0.80470 -0.33601  0.73210 -0.09861  0.08395  0.49669
…
X19 -0.06976 -0.23731 -1.47115  0.64386 -0.22138  0.47097
X20  1.36948  1.49536 -1.20732 -0.43657  0.05829 -0.27214

Site constraints (linear combinations of constraining variables)

        CAP1
X1  -0.54756
X2  -0.36059
…
X19 -0.30717
X20 -0.36059

Biplot scores for constraining variables

   CAP1
A1    1

Test for significance of all constrained eigenvalues
Pseudo-F:        2.26279 
Significance:    0.006 
Based on 1000 permutations under reduced model.
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Figure 10.18  Db-RDA ordination graph for the first constrained and first residual axis for the dune meadow dataset 
using scaling method 1, the Bray-Curtis distance and the depth of the A1 horizon as a constraining variable. Sites are 
plotted as circles and species as crosses.

Choice of ordination method

As we saw in chapter 8, different ecological 
distance measures have different properties. The 
properties of the ordination method you use 
therefore depend on the properties of the distance 
measure on which it is based. The first rule should 
be that you use a distance measure that is a useful 
ecological distance measure. A good analysis 
practice is also to repeat the analysis with several 
good distance measures and investigate whether 
all these analyses lead to the same conclusion.

There are some methods to investigate how well 
the distances in the ordination graph represent the 
total distances as provided in a distance matrix. 
The first method calculates the percentage of 
variance that is displayed in the graph. The second 
method compares the ecological distance between 
sites with the distance between the positions of the 
sites in the ordination graph. The distances can be 
plotted against one another and so can you can 
check how good the correlation is. Figure 10.19 

shows the correspondence between the Bray-
Curtis distance on the first two axes of a PCoA (as 
shown in Figure 10.8), and the total Bray-Curtis 
distance among sites. You can see that the overall 
correlation is quite good, but that some sites are 
plotted relatively closer than other sites despite the 
same total distance.

A third method of investigating how well the 
distances in the ordination graph represent the 
total distance combines clustering results with 
ordination results. It is recommended to plot the 
results of single linkage (see Chapter 9 ) on top of 
an ordination graph. The results of single linkage 
produce a minimum spanning tree that shows 
how sites and clusters can be joined together by 
the smallest possible total length of segments 
among them. Figure 10.20 gives an example for 
the first two axes of PCoA. For example, sites X20 
and X15 are plotted close together in the graph 
and were also joined by the minimum spanning 
tree. This is an indication that the graph provides 
a good representation of their ecological distance. 
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Figure 10.19  Relationship between distances between site positions in an ordination graph (Figure 10.8) and total 
Bray-Curtis distance between sites. The line shows the fit of a GAM (see chapters 6 and 7) between the original 
distances and the distances in the ordination graph.

Figure 10.20  Plotting the cluster structure on top of an ordination graph (Figure 10.8) by a minimum spanning tree to 
investigate how well ecological distance is represented in the ordination graph.

If sites that had a small distance in the graph were 
joined through the minimum spanning tree at far 
distance in the graph, such as sites X1 and X2, 
this means that they are only joined much later 

in the process. The distance between X1 and X2 
is thus not well presented in the graph. A better 
ordination graph will have a shorter length of the 
minimum spanning tree. 
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Further interpretation of ordination 
graphs by indirect gradient 
analysis
As with constrained ordination, indirect gradient 
analysis methods also seek to understand the 
relationship between environmental variables of a 
site and their species composition. They are applied 
after an unconstrained ordination analysis. The 
key idea is to try to relate the pattern of sites in the 
ordination graph to environmental variables. 

There are three methods of investigating 
quantitative environmental variables.

The first method calculates a fitted vector of 
an environmental variable with the ordination 
configuration. This vector shows the direction 
in the ordination graph where sites are expected 
with values that are higher than average for the 
environmental variable. This is a similar approach 
as the one shown earlier for calculating correlation 
scores for a species for a PCoA or NMS. The 
interpretation is also similar (see also Figure 10.4).

When you calculate the vector scores for the 
depth of the A1 horizon and the first two axes of 
a PCoA based on the Bray-Curtis distance for the 
dune meadow dataset, then you obtain the result 
shown below.

The scores for the head of the vector (listed in 
the result for Dim1 and Dim2) can be used to 
plot a vector for the environmental variable onto 
the ordination graph. Figure 10.21 shows how 
the results presented above can be presented 
graphically. You can see that we expect greater 
depth of the A1 horizon on sites X14, X15, X16 
and X20.

The second method is to plot the values of the 
environmental variable as a bubble graph. This 
approach is more general than fitting a vector, as 
this method does not assume that the values will 
increase linearly on an axis. Figure 10.22 shows 

the bubble graph of the depth of the A1 horizon. 
Large bubbles indicate a larger value for the A1 
horizon. The graph indicates that in general depth 
of the A1 horizon increases with Dim1, but there 
are exceptions. We can see large values for X14 and 
X16, but the value of X20 is not so large. There 
is no sign of depth of A1 changing with Dim2 
except for X14 and X15. This example shows how 
the vector (Figure 10.21) picks out trends but does 
not show any detail of deviation from the trend. 

The third method of investigating a quantitative 
environmental variable is to fit a surface that 
models how the environmental variable changes 
over the ordination graph. Rather than simply 
plotting the bubbles, we can try to describe the 
pattern in bubble size by a smooth surface, using a 
GAM as described in chapter 7. 

When calculating the surface for the depth of 
the A1 horizon for the PCoA based on the Bray-
Curtis distance for the dune meadow dataset, you 
obtain the result presented in Figure 10.23. This 
figure shows a similar picture as Figure 10.22, 
with increasing values from left to right in the 
ordination graph (the GAM approach can reveal 
more complex patterns, but in this case the 
algorithm fitted a linear trend). The lower value for 
site X20 is not reflected. If the residuals from the 
fitted surface were plotted (figure not included), 
then it would be clear that X20 is not represented 
well in the Figure 10.23. It is a good statistical 
practice to investigate residuals.

For categorical environmental variables, there 
are some other methods of indirect gradient 
analysis.

The first method is to use a different symbol 
for each category of the environmental variable. 
Figure 10.24 gives an example for the type of 
management for the PCoA ordination for the 
dune meadow dataset. We can see that all sites 
with nature management are plotted at the top 

      Dim1    Dim2     r2 Pr(>r)    
A1 0.98806 0.15404 0.3845 < 0.01 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
P values based on 100 permutations.
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Figure 10.21  Plotting a vector for a quantitative environmental variable onto an ordination graph (Figure 10.8).

Figure 10.22  Plotting a bubble graph for a quantitative environmental variable onto an ordination graph (Figure 
10.8).

Figure 10.23  Plotting a contour for a quantitative environmental variable onto an ordination graph (Figure 10.8).
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part of the graph. We can also see that some sites 
with hobby farming are more similar in species 
composition to sites with biological farming, 
whereas other sites with hobby farming are 
more similar in species composition to sites with 
standard farming.

The second method for categorical 
environmental variables is to calculate the average 
plotting position for each category (the centroids). 
When you calculate the average positions for 
management for the dune meadow dataset and 
the PCoA graph, then you obtain the following 
result:

Centroids:
       Dim1    Dim2
PBF -0.2694  0.0032
PHF -0.1350 -0.0623
PNM  0.1822  0.2609
PSF  0.0650 -0.2106

Goodness of fit:
      r2 Pr(>r)   
P 0.4482   0.01 **

Figure 10.24  Plotting different symbols for different categories of a categorical environmental variable onto an 
ordination graph (Figure 10.8). A convex hull encloses all sites of the same category.

These centroid positions can be plotted onto the 
ordination graph (Figure 10.25). By connecting 
each site with the centroid of the same category 
(a spiderplot), you can investigate whether some 
sites are outliers. We can observe again that sites 
with nature management have a different species 
composition, and that sites with hobby farming are 
either more similar to sites with standard farming 
or sites with biological farming. Since the convex 
hulls (Figure 10.24) are more sensitive to outliers, 
you need to be careful in making conclusions 
that species composition is similar when convex 
hulls overlap. When convex hulls do not overlap, 
this provides evidence that species composition is 
dissimilar. 

A third method is to calculate confidence ellipses 
that predict where sites of a certain category will 
occur. This method estimates a confidence interval 
for sites of each category, using the positions of the 
sites on the horizontal and vertical axes as input 
variables. This approach is thus more sophisticated 
than the previous methods for categorical variables. 
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Figure 10.26 gives an example for the type of 
management for the PCoA ordination for the 
dune meadow dataset. The ellipses indicate where 
95% of sites of the same category are expected to 
occur. Different symbols were also used for the 
different categories. You can see again that sites 
with nature management occur at the top of the 
graph, and that there is an overlap for sites with 
hobby farming and the other two categories of 
standard farming and biological farming.

Figure 10.25  Connecting sites to the centroid of each category onto an ordination graph (Figure 10.8).

Further interpretation of ordination 
graphs for individual species

By analogy with indirect gradient analysis methods, 
patterns of some individual species can be analysed 
after an ordination analysis. You can use the 
ordination method to check whether sites are 
different in species composition, and then check for 
the species that contribute most to the differences.

Figure 10.27 shows the results of the CAP 

Figure 10.26   Drawing confidence ellipses for each category onto an ordination graph (Figure 10.8).
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We can see from the regression coefficients that 
fewer individuals of Poa trivialis are predicted for 
nature management (checking the dune meadow 
datasets reveals that the species does not occur 
on the six quadrats with nature management). 
The ANOVA provides evidence for differences 
among categories for management. The standard 
errors and significance levels for the regression 
coefficients are large, however. What is happening? 
The reason is that the sample size is quite small in 
comparison to the four categories of management 
to investigate differences for individual species. 
In this case, we can observe actual differences in 
abundance, but we can not confirm that these 
differences were not observed by chance. This 
means that we could demonstrate that the sites 
are different in composition, but could not check 
for an individual species. This result is not entirely 
surprising, since the occurrences of species are 
correlated with each other. As we investigate several 
species at the same time in an ordination analysis, 
the investigation becomes more powerful.

analysis for the dune meadow dataset (based on 
the Bray-Curtis distance) for differences in species 
composition related to differences in management. 
The results of this analysis were provided above 
(including Figure 10.17). Added to the earlier 
results are the hulls for the different management 
categories, symbols for the different categories 
and the interpretation for species Poa trivialis. 
Since this species has a long species vector, we 
expect that it contributes to differences in species 
composition between types of management. We 
can also expect that abundances for this species 
will be lower for nature management, since the 
projected scores for this species are lower for this 
type of management.

The formal way of testing for the differences 
for Poa trivialis for the different types of 
management is a regression analysis, as seen in 
chapter 7. A GLM regression with log link and 
quasipoisson variance functions gives the result 
shown on the next page.

Figure 10.27  Investigating for important species that contribute to the differences in species composition. The first 
axes of a CAP analysis of the dune meadow dataset based on the Bray-Curtis distance and with type of management 
as explanatory factor.
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glm(formula = Poatri ~ Management, family = quasipoisson(link = log), 
    data = dune.env, na.action = na.exclude)

Deviance Residuals: 
      Min         1Q     Median         3Q        Max  
-2.708013  -0.331340  -0.000091   0.157273   1.776335  

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)         1.2993     0.2908   4.468 0.000388 ***
Management[T.HF]    0.2693     0.3512   0.767 0.454260    
Management[T.NM]  -20.6019  3711.5165  -0.006 0.995640    
Management[T.SF]    0.2412     0.3432   0.703 0.492330    

(Dispersion parameter for quasipoisson family taken to be 0.9301272)

    Null deviance: 63.412  on 19  degrees of freedom
Residual deviance: 17.842  on 16  degrees of freedom

Analysis of Deviance Table

           Df Deviance Resid. Df Resid. Dev      F   Pr(>F)    
NULL                          19     63.412                    
Management  3   45.570        16     17.842 16.331 3.98e-05 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1 
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Doing the analyses with the menu options of Biodiversity.R

Select the species and environmental matrices:

Biodiversity > Environmental matrix > Select environmental matrix

Select the dune.env dataset

Biodiversity > Community matrix > Select community matrix

Select the dune meadow dataset

Calculating a principal component analysis (PCA):

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: PCA (or PCA (prcomp))

scaling: 1

Plot method: ordiplot

Plot method: text sites

Plot method: text species

Plot method: equilibrium circle

Calculating a PCA on a transformed matrix:
Biodiversity > Community matrix > Transform community matrix…

Method: Hellinger

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: PCA

Conducting a principal coordinates analysis (PCoA)

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: PCoA (or PCoA (Caillez))

Distance: bray

Calculating a non-metric multidimensional scaling (NMS)

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: NMS (or NMS (standard))

Distance: bray

NMS axes: 2

NMS permutations: 100
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Calculating a correspondence analysis (CA or WA)

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: CA

scaling: 1

Calculating a redundancy analysis (RDA):

Biodiversity > Analysis of ecological distance > Constrained ordination…

Ordination method: RDA

scaling: 1

permutations: 100

Explanatory: Management

Calculating a canonical correspondence analysis (CCA)

Biodiversity > Analysis of ecological distance > Constrained ordination…

Ordination method: CCA

scaling: 2

permutations: 100

Explanatory: Management

Calculating distance-based redundancy analysis (db-RDA)

Biodiversity > Analysis of ecological distance > Constrained ordination…

Ordination method: capscale

distance: bray

permutations: 100

Explanatory: Management

Calculating the correlation between distance in an ordination graph and total distance

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: PCoA

Distance: bray

Plot method: ordiplot

Plot method: distance displayed
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Plotting clustering results onto an ordination graph:

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: PCoA

Distance: bray

Plot method: ordiplot

Plot method: ordicluster

Plotting quantitative environmental variables onto an ordination graph:

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: PCoA

Distance: bray

Plot variable: A1

Plot method: ordiplot

Plot method: vectorfit

Plot method: ordibubble

Plot method: ordisurf

Plotting categorical environmental variables onto an ordination graph:

Biodiversity > Analysis of ecological distance > Unconstrained ordination…

Ordination method: PCoA

Distance: bray

Plot variable: Management

Plot method: ordiplot

Plot method: factorfit

Plot method: ordihull

Plot method: ordispider

Plot method: ordiellipse

Plot method: ordisymbol
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Doing the analyses with the command options of Biodiversity.R 

Calculating a principal component analysis (PCA)

Ordination.model1 <- rda(dune) 

summary(Ordination.model1, scaling=1)

plot1 <- ordiplot(Ordination.model1, scaling=1, type=”text”)

plot2 <- ordiplot(Ordination.model1, scaling=2, type=”text”)

Calculating the variance of each species of the species matrix

inertcomp(Ordination.model1, display=’species’, 
statistic=’explained’, proportional=F) 

Calculating the proportion of variance explained for an ordination graph

goodness(Ordination.model1, display=’sites’, choices=c(1:2), 
statistic=’explained’)

Adding a vector and perpendicular lines for a particular species to an ordination plot

ordivector(plot1,”Agrsto”,lty=2)

Calculating correlations among vectors:

cor.test(dune[,”Alogen”],dune[,”Agrsto”])

Calculating the number of ecologically meaningful principal components:

PCAsignificance(Ordination.model1,axes=30)

Drawing an equilibrium circle

ordiequilibriumcircle(Ordination.model1,plot1)

Calculating a PCA on a transformed matrix

Community.1 <- disttransform(dune, method=’Hellinger’)

Ordination.model2 <- rda(Community.1) 

summary(Ordination.model2, scaling=1)

plot3 <- ordiplot(Ordination.model2, scaling=1, type=”text”)
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Calculating a principal coordinates analysis (PCoA)

distmatrix <- vegdist(dune,method=’bray’)

Ordination.model3 <- cmdscale(distmatrix, k=nrow(dune)-1, 
eig=T, add=F)

Ordination.model3 <- add.spec.scores( Ordination.model3, dune, 
method=’pcoa.scores’, Rscale=T, scaling=1, multi=1)

plot4 <- ordiplot(Ordination.model3, type=’text’)

Calculating a non-metric multidimensional scaling (NMS)

distmatrix <- vegdist(dune, method=’bray’)

initNMS <- NMSrandom(distmatrix, perm=100, k=2)

Ordination.model4 <- postMDS(initNMS, distmatrix)

Ordination.model4 <- add.spec.scores( Ordination.model4, dune, 
method=’wa.scores’)

Ordination.model4

plot5 <- ordiplot(Ordination.model4)

Calculating a correspondence analysis (CA or WA)

Ordination.model5 <- cca(dune) 

summary(Ordination.model5, scaling=1)

plot6 <- ordiplot(Ordination.model5, type=’text’, scaling=1)

Calculating a redundancy analysis (RDA)

Ordination.model6 <- rda(dune ~ Management, dune.env)

summary(Ordination.model6, scaling=1)

permutest.cca(Ordination.model6, permutations=1000) 

plot7 <- ordiplot(Ordination.model1, type=’text’, scaling=1)

Calculating a canonical correspondence analysis (CCA)

Ordination.model7 <- cca(dune ~ Management, dune.env)

summary(Ordination.model7, scaling=2)

permutest.cca(Ordination.model7, permutations=1000)

plot8 <- ordiplot(Ordination.model7, type=’text’, scaling=1)
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Calculating distance-based redundancy analysis (db-RDA)

Ordination.model8 <- capscale(dune ~ Management, dune.env)

summary(Ordination.model8, scaling=1)

permutest.cca(Ordination.model8, permutations=1000)

plot9 <- ordiplot(Ordination.model8, type=’text’, scaling=1)

Calculating the correlation between distance in an ordination graph and total distance

distdisplayed(dune, plot4, distx=’bray’)

Plotting clustering results onto an ordination graph

distmatrix <- vegdist(dune, method=’bray’)

cluster <- hclust(distmatrix, method=’single’)

ordicluster(plot4, cluster)

Plotting quantitative environmental variables onto an ordination graph

fitted <- envfit(plot4, A1, permutations=100) 

plot(fitted)

fitted <- vectorfit(plot4, A1, permutations=100)

ordibubble(plot4, A1)

ordisurf(plot4, A1)

Plotting categorical environmental variables onto an ordination graph

ordisymbol(plot4, dune.env, ‘Management’, legend=T) 

fitted <- envfit(plot4, Management, permutations=100) 

plot(fitted)

fitted <- factorfit(plot4, Management)

ordihull(plot4, Management)

ordispider(plot4, Management)

ordiellipse(plot4, Management)
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Effective data analysis requires familiarity with basic concepts and an 

ability to use a set of standard tools, as well as creativity and imagination. 

Tree diversity analysis provides a solid practical foundation for training in 

statistical methods for ecological and biodiversity studies.

This manual arose from training researchers to analyse tree diversity data 

collected on African farms, yet the statistical methods can be used for a 

wider range of organisms, for different hierarchical levels of biodiversity and 

for a variety of environments — making it an invaluable tool for scientists and 

students alike.

Focusing on the analysis of species survey data, Tree diversity analysis 

provides a comprehensive review of the methods that are most often used in 

recent diversity and community ecology literature including: 

• Species accumulation curves for site-based and individual-based species 

accumulation, including a new technique for exact calculation of site-

based species accumulation.

• Description of appropriate methods for investigating differences in 

diversity and evenness such as Rényi diversity profiles, including methods 

of rarefaction to the same sample size for different subsets of the data.

• Modern regression methods of generalized linear models and generalized 

additive models that are often appropriate for investigating patterns of 

species occurrence and species counts.

• Methods of ordination for investigating community structure and the 

influence of environmental characteristics, including recent methods 

such as distance-based redundancy analysis and constrained analysis of 

principal coordinates. 

The manual also introduces a powerful new software programme, 
Biodiversity.R, that is capable of performing all the statistical analyses 
described in the book. The software is built using the free R language and 
environment for statistical computing, and several of its libraries such as 
the vegan community ecology package and the R-commander graphical 
user interface. The software is provided on CD.


