The Center for International Forestry Research (CIFOR and World Agroforestry (ICRAF) joined forces in 2019, leveraging a combined 65 years’ experience in research on the role of forests and trees in solving critical global challenges.
Year
2020
Authors
Sari R R, Saputra D D, Hairiah K, Rozendaal D M A, Roshetko J MRoshetko J M
, van Noordwijk Mvan Noordwijk M
James (Jim) Roshetko is an Agroforestry Systems Scientist with 37 years of exper...
Meine van Noordwijk is a Distinguished Research Fellow at World Agroforestry. He...
In
- Journal articles
Access
Region
The degree to which the maintenance of carbon (C) stocks and tree diversity can be jointly achieved in production landscapes is debated. C stocks in forests are decreased by logging before tree diversity is affected, while C stocks in monoculture tree plantations increase, but diversity does not. Agroforestry can break this hysteresis pattern, relevant for policies in search of synergy. We compared total C stocks and tree diversity among degraded forest, complex cacao/fruit tree agroforests, simple shade-tree cacao agroforestry, monoculture cacao, and annual crops in the Konawe District, Southeast Sulawesi, Indonesia. We evaluated farmer tree preferences and the utility value of the system for 40 farmers (male and female). The highest tree diversity (Shannon–Wiener H index 2.36) and C stocks (282 Mg C ha−1) were found in degraded forest, followed by cacao-based agroforestry systems (H index ranged from 0.58–0.93 with C stocks of 75–89 Mg ha−1). Male farmers selected timber and fruit tree species with economic benefits as shade trees, while female farmers preferred production for household needs (fruit trees and vegetables). Carbon stocks and tree diversity were positively related (R2 = 0.72). Adding data from across Indonesia (n = 102), agroforestry systems had an intermediate position between forest decline and reforestation responses. Maintaining agroforestry in the landscape allows aboveground C stocks up to 50 Mg ha−1 and reduces biodiversity loss. Agroforestry facilitates climate change mitigation and biodiversity goals to be addressed simultaneously in sustainable production landscapes.

